Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 95, Issue 6, Pages 878–883
DOI: https://doi.org/10.4213/mzm10457
(Mi mzm10457)
 

This article is cited in 2 scientific papers (total in 2 papers)

The Samarskii Problem for the Fractal Diffusion Equation

Z. A. Nakhusheva

Scientific Research Institute of Applied Mathematics and Automation, Kabardino-Balkar Scientific Centre of the Russian Academy of Sciences, Nalchik
References:
Abstract: We prove the existence and uniqueness of the solution of the Samarskii problem in a modified setting for a loaded differential fractal diffusion equation and propose a constructive scheme for the equivalent reduction of this nonlocal boundary-value problem to the corresponding local problem.
Keywords: fractal diffusion equation, Samarskii problem for the diffusion equation, Riemann–Liouville differential operator, Euler gamma function.
Received: 23.04.2013
Revised: 10.07.2013
English version:
Mathematical Notes, 2014, Volume 95, Issue 6, Pages 815–819
DOI: https://doi.org/10.1134/S0001434614050265
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: Z. A. Nakhusheva, “The Samarskii Problem for the Fractal Diffusion Equation”, Mat. Zametki, 95:6 (2014), 878–883; Math. Notes, 95:6 (2014), 815–819
Citation in format AMSBIB
\Bibitem{Nak14}
\by Z.~A.~Nakhusheva
\paper The Samarskii Problem for the Fractal Diffusion Equation
\jour Mat. Zametki
\yr 2014
\vol 95
\issue 6
\pages 878--883
\mathnet{http://mi.mathnet.ru/mzm10457}
\crossref{https://doi.org/10.4213/mzm10457}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3306225}
\elib{https://elibrary.ru/item.asp?id=21826512}
\transl
\jour Math. Notes
\yr 2014
\vol 95
\issue 6
\pages 815--819
\crossref{https://doi.org/10.1134/S0001434614050265}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338338200026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903388304}
Linking options:
  • https://www.mathnet.ru/eng/mzm10457
  • https://doi.org/10.4213/mzm10457
  • https://www.mathnet.ru/eng/mzm/v95/i6/p878
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:496
    Full-text PDF :257
    References:97
    First page:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025