Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 97, Issue 1, Pages 48–57
DOI: https://doi.org/10.4213/mzm10569
(Mi mzm10569)
 

This article is cited in 15 scientific papers (total in 15 papers)

The Maupertuis–Jacobi Principle for Hamiltonians of the Form $F(x,|p|)$ in Two-Dimensional Stationary Semiclassical Problems

S. Yu. Dobrokhotovab, D. S. Minenkovab, M. Rouleuxcd

a Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
b A. Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow
c Université du Sud Toulon-Var, France
d Centre de Physique Théorique, France
References:
Abstract: We consider two-dimensional asymptotic formulas based on the Maslov canonical operator arising in stationary problems for differential and pseudodifferential equations. In the case of Lagrangian manifolds invariant with respect to Hamiltonian flow with Hamiltonians of the form $F(x,|p|)$, we show how asymptotic formulas can be simplified by using the well-known (in classical mechanics) Maupertuis–Jacobi correspondence principle to replace the Hamiltonians $F(x,|p|)$ by Hamiltonians of the form $C(x)|p|$ arising, in particular, in geometric optics and related to the Finsler metric. As examples, we consider Hamiltonians corresponding to the Schrödinger equation, the two-dimensional Dirac equation, and the pseudodifferential equations for surface water waves.
Keywords: Maupertuis–Jacobi correspondence principle, Lagrangian manifold, Maslov canonical operator, Hamiltonian, Schrödinger equation, Dirac equation, Hamiltonian flow, surface water wave, pseudodifferential equation.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00521
Ministry of Education and Science of the Russian Federation МК-1017.2013.1
This work was supported by the Russian Foundation for Basic Research (grant no. 14-01-00521) and by the Grant of the President of the Russian Federation (grant no. MK-1017.2013.1).
Received: 29.08.2014
English version:
Mathematical Notes, 2015, Volume 97, Issue 1, Pages 42–49
DOI: https://doi.org/10.1134/S0001434615010058
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: S. Yu. Dobrokhotov, D. S. Minenkov, M. Rouleux, “The Maupertuis–Jacobi Principle for Hamiltonians of the Form $F(x,|p|)$ in Two-Dimensional Stationary Semiclassical Problems”, Mat. Zametki, 97:1 (2015), 48–57; Math. Notes, 97:1 (2015), 42–49
Citation in format AMSBIB
\Bibitem{DobMinRou15}
\by S.~Yu.~Dobrokhotov, D.~S.~Minenkov, M.~Rouleux
\paper The Maupertuis--Jacobi Principle for Hamiltonians of the Form~$F(x,|p|)$ in Two-Dimensional Stationary Semiclassical Problems
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 1
\pages 48--57
\mathnet{http://mi.mathnet.ru/mzm10569}
\crossref{https://doi.org/10.4213/mzm10569}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3370492}
\zmath{https://zbmath.org/?q=an:06459051}
\elib{https://elibrary.ru/item.asp?id=23421493}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 1
\pages 42--49
\crossref{https://doi.org/10.1134/S0001434615010058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350557000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84941686389}
Linking options:
  • https://www.mathnet.ru/eng/mzm10569
  • https://doi.org/10.4213/mzm10569
  • https://www.mathnet.ru/eng/mzm/v97/i1/p48
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025