Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 102, Issue 3, Pages 436–444
DOI: https://doi.org/10.4213/mzm11248
(Mi mzm11248)
 

This article is cited in 2 scientific papers (total in 2 papers)

Maximal Subsets Free of Arithmetic Progressions in Arbitrary Sets

A. S. Semchenkov

Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
Full-text PDF (434 kB) Citations (2)
References:
Abstract: The problem of determining the maximum cardinality of a subset containing no arithmetic progressions of length $k$ in a given set of size $n$ is considered. It is proved that it is sufficient, in a certain sense, to consider the interval $[1,\dots,n]$. The study continues the work of Komlós, Sulyok, and Szemerédi.
Keywords: additive combinatorics, combinatorial number theory.
Funding agency Grant number
Russian Science Foundation 14-11-00433
This work was supported by the Russian Science Foundation under grant 14-11-00433.
Received: 31.05.2016
Revised: 17.08.2016
English version:
Mathematical Notes, 2017, Volume 102, Issue 3, Pages 396–402
DOI: https://doi.org/10.1134/S0001434617090097
Bibliographic databases:
Document Type: Article
UDC: 510.22
Language: Russian
Citation: A. S. Semchenkov, “Maximal Subsets Free of Arithmetic Progressions in Arbitrary Sets”, Mat. Zametki, 102:3 (2017), 436–444; Math. Notes, 102:3 (2017), 396–402
Citation in format AMSBIB
\Bibitem{Sem17}
\by A.~S.~Semchenkov
\paper Maximal Subsets Free of Arithmetic Progressions in Arbitrary Sets
\jour Mat. Zametki
\yr 2017
\vol 102
\issue 3
\pages 436--444
\mathnet{http://mi.mathnet.ru/mzm11248}
\crossref{https://doi.org/10.4213/mzm11248}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3691707}
\elib{https://elibrary.ru/item.asp?id=29864979}
\transl
\jour Math. Notes
\yr 2017
\vol 102
\issue 3
\pages 396--402
\crossref{https://doi.org/10.1134/S0001434617090097}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000413455100009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032257746}
Linking options:
  • https://www.mathnet.ru/eng/mzm11248
  • https://doi.org/10.4213/mzm11248
  • https://www.mathnet.ru/eng/mzm/v102/i3/p436
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025