Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 100, Issue 6, paper published in the English version journal (Mi mzm11475)  

This article is cited in 3 scientific papers (total in 3 papers)

Papers published in the English version of the journal

On Invariant Graph Subspaces of a $J$-Self-Adjoint Operator in the Feshbach Case

S. A. Albeverioa, A. K. Motovilovb

a Institut für Angewandte Mathematik und HCM, Universität Bonn, Bonn, Germany
b Joint Institute for Nuclear Research and Dubna State University, Dubna, Russia
Citations (3)
Abstract: We consider a $J$-self-adjoint $2\times2$ block operator matrix $L$ in the Feshbach spectral case, that is, in the case where the spectrum of one main-diagonal entry of $L$ is embedded into the absolutely continuous spectrum of the other main-diagonal entry. We work with the analytic continuation of the Schur complement of a main-diagonal entry in $L-z$ to the unphysical sheets of the spectral parameter $z$ plane. We present conditions under which the continued Schur complement has operator roots in the sense of Markus–Matsaev. The operator roots reproduce (parts of) the spectrum of the Schur complement, including the resonances. We, then discuss the case where there are no resonances and the associated Riccati equations have bounded solutions allowing the graph representations for the corresponding $J$-orthogonal invariant subspaces of $L$. The presentation ends with an explicitly solvable example.
Keywords: $J$-self-adjoint operator, subspace perturbation problem, graph subspace, operator Riccati equation, off-diagonal perturbation, resonance.
Funding agency Grant number
Saint Petersburg State University 11.38.241.2015
Support of this research by the Deutsche Forschungsgemeinschaft, the Russian Foundation for Basic Research, and the Heisenberg–Landau Program is gratefully acknowledged. The work was also supported by St. Petersburg State University (grant no. 11.38.241.2015).
English version:
Mathematical Notes, 2016, Volume 100, Issue 6, Pages 761–773
DOI: https://doi.org/10.1134/S0001434616110158
Bibliographic databases:
Document Type: Article
Language: English
Citation: S. A. Albeverio, A. K. Motovilov, “On Invariant Graph Subspaces of a $J$-Self-Adjoint Operator in the Feshbach Case”, Math. Notes, 100:6 (2016), 761–773
Citation in format AMSBIB
\Bibitem{AlbMot16}
\by S.~A.~Albeverio, A.~K.~Motovilov
\paper On Invariant Graph Subspaces of a $J$-Self-Adjoint Operator in the Feshbach Case
\jour Math. Notes
\yr 2016
\vol 100
\issue 6
\pages 761--773
\mathnet{http://mi.mathnet.ru/mzm11475}
\crossref{https://doi.org/10.1134/S0001434616110158}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3593109}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391490500015}
\elib{https://elibrary.ru/item.asp?id=29470003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85007044816}
Linking options:
  • https://www.mathnet.ru/eng/mzm11475
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025