Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 107, Issue 5, Pages 643–656
DOI: https://doi.org/10.4213/mzm12729
(Mi mzm12729)
 

This article is cited in 6 scientific papers (total in 6 papers)

Convergence of a Limit Periodic Schur Continued Fraction

V. I. Buslaev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (530 kB) Citations (6)
References:
Abstract: In this paper, we show that if the parameters of a Schur continued fraction tend to zero, then the functions to which the even convergents converge inside the unit disk and the functions to which the odd convergents converge outside the unit disk cannot have a meromorphic continuation to each other through any arc of the unit circle. This result is obtained as a consequence of the convergence theorem for limit periodic Schur continued fractions.
Keywords: continued fractions, Hankel determinants, transfinite diameter, meromorphic continuation.
Funding agency Grant number
Russian Science Foundation 19-11-00316
This work was supported by the Russian Science Foundation under grant 19-11-00316.
Received: 26.06.2019
Revised: 04.12.2019
English version:
Mathematical Notes, 2020, Volume 107, Issue 5, Pages 701–712
DOI: https://doi.org/10.1134/S0001434620050016
Bibliographic databases:
Document Type: Article
UDC: 517.53
Language: Russian
Citation: V. I. Buslaev, “Convergence of a Limit Periodic Schur Continued Fraction”, Mat. Zametki, 107:5 (2020), 643–656; Math. Notes, 107:5 (2020), 701–712
Citation in format AMSBIB
\Bibitem{Bus20}
\by V.~I.~Buslaev
\paper Convergence of a Limit Periodic Schur Continued Fraction
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 5
\pages 643--656
\mathnet{http://mi.mathnet.ru/mzm12729}
\crossref{https://doi.org/10.4213/mzm12729}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4092564}
\elib{https://elibrary.ru/item.asp?id=43295954}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 5
\pages 701--712
\crossref{https://doi.org/10.1134/S0001434620050016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000542631800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087052932}
Linking options:
  • https://www.mathnet.ru/eng/mzm12729
  • https://doi.org/10.4213/mzm12729
  • https://www.mathnet.ru/eng/mzm/v107/i5/p643
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025