|
Mean Convergence of Periodic Pseudotrajectories and Invariant Measures of Dynamical Systems
G. S. Osipenko Sevastopol Branch of the M.V. Lomonosov Moscow State University
Abstract:
A discrete dynamical system generated by a homeomorphism of a compact manifold is considered. A sequence $\omega_n$ of periodic $\varepsilon_n$-trajectories converges in the mean as $\varepsilon_n\to 0$ if, for any continuous function $\varphi$, the mean values on the period $\overline\varphi(\omega_n)$ converge as $n\to\infty$. It is shown that $\omega_n$ converges in the mean if and only if there exists an invariant measure $\mu$ such that $\overline\varphi(\omega_n)$ converges to $\int\varphi\,d\mu$. If a sequence $\omega_n$ converges in the mean and converges uniformly to a trajectory $\operatorname{Tr}$, then the trajectory $\operatorname{Tr}$ is recurrent and its closure is a minimal strictly ergodic set.
Keywords:
pseudotrajectory, invariant measure, symbolic image, minimal set, ergodicity.
Received: 30.03.2020 Revised: 04.07.2020
Citation:
G. S. Osipenko, “Mean Convergence of Periodic Pseudotrajectories and Invariant Measures of Dynamical Systems”, Mat. Zametki, 108:6 (2020), 882–898; Math. Notes, 108:6 (2020), 854–866
Linking options:
https://www.mathnet.ru/eng/mzm12742https://doi.org/10.4213/mzm12742 https://www.mathnet.ru/eng/mzm/v108/i6/p882
|
|