Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 108, Issue 6, Pages 882–898
DOI: https://doi.org/10.4213/mzm12742
(Mi mzm12742)
 

Mean Convergence of Periodic Pseudotrajectories and Invariant Measures of Dynamical Systems

G. S. Osipenko

Sevastopol Branch of the M.V. Lomonosov Moscow State University
References:
Abstract: A discrete dynamical system generated by a homeomorphism of a compact manifold is considered. A sequence $\omega_n$ of periodic $\varepsilon_n$-trajectories converges in the mean as $\varepsilon_n\to 0$ if, for any continuous function $\varphi$, the mean values on the period $\overline\varphi(\omega_n)$ converge as $n\to\infty$. It is shown that $\omega_n$ converges in the mean if and only if there exists an invariant measure $\mu$ such that $\overline\varphi(\omega_n)$ converges to $\int\varphi\,d\mu$. If a sequence $\omega_n$ converges in the mean and converges uniformly to a trajectory $\operatorname{Tr}$, then the trajectory $\operatorname{Tr}$ is recurrent and its closure is a minimal strictly ergodic set.
Keywords: pseudotrajectory, invariant measure, symbolic image, minimal set, ergodicity.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00388 А
This work was supported by the Russian Foundation for Basic Research under grant 19-01-00388 A.
Received: 30.03.2020
Revised: 04.07.2020
English version:
Mathematical Notes, 2020, Volume 108, Issue 6, Pages 854–866
DOI: https://doi.org/10.1134/S0001434620110279
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: G. S. Osipenko, “Mean Convergence of Periodic Pseudotrajectories and Invariant Measures of Dynamical Systems”, Mat. Zametki, 108:6 (2020), 882–898; Math. Notes, 108:6 (2020), 854–866
Citation in format AMSBIB
\Bibitem{Osi20}
\by G.~S.~Osipenko
\paper Mean Convergence of Periodic Pseudotrajectories and Invariant Measures of Dynamical Systems
\jour Mat. Zametki
\yr 2020
\vol 108
\issue 6
\pages 882--898
\mathnet{http://mi.mathnet.ru/mzm12742}
\crossref{https://doi.org/10.4213/mzm12742}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4181047}
\elib{https://elibrary.ru/item.asp?id=45090955}
\transl
\jour Math. Notes
\yr 2020
\vol 108
\issue 6
\pages 854--866
\crossref{https://doi.org/10.1134/S0001434620110279}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000599343700026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097519683}
Linking options:
  • https://www.mathnet.ru/eng/mzm12742
  • https://doi.org/10.4213/mzm12742
  • https://www.mathnet.ru/eng/mzm/v108/i6/p882
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025