Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 109, Issue 1, Pages 129–134
DOI: https://doi.org/10.4213/mzm12778
(Mi mzm12778)
 

On the Quasinormal Convergence of Functions

A. V. Osipovabc

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg
c Ural State University of Economics, Ekaterinburg
References:
Abstract: In the paper, it is proved that a topological space $X$ is a $QN$-space if and only if every image of the space $X$ under a Baire mapping to the Baire space $\mathbb{N}^{\mathbb{N}}$ is bounded. It is shown that there exists a compact $QN$-space such that its image under a Borel mapping to the Baire space $\mathbb{N}^{\mathbb{N}}$ is unbounded. The existence of such a space answers a question of L. Bukovský and J. Haleš. Generalizations of results of N. N. Kholshchevnikova concerning the representation of functions on subsets of the number line by trigonometric series are obtained.
Keywords: $QN$-space, quasinormal convergence, $C_p$-theory, $\alpha_1$-property, Baire function, Baire space.
Received: 02.05.2020
Revised: 12.07.2020
English version:
Mathematical Notes, 2021, Volume 109, Issue 1, Pages 120–124
DOI: https://doi.org/10.1134/S0001434621010144
Bibliographic databases:
Document Type: Article
UDC: 515.122.5
Language: Russian
Citation: A. V. Osipov, “On the Quasinormal Convergence of Functions”, Mat. Zametki, 109:1 (2021), 129–134; Math. Notes, 109:1 (2021), 120–124
Citation in format AMSBIB
\Bibitem{Osi21}
\by A.~V.~Osipov
\paper On the Quasinormal Convergence of Functions
\jour Mat. Zametki
\yr 2021
\vol 109
\issue 1
\pages 129--134
\mathnet{http://mi.mathnet.ru/mzm12778}
\crossref{https://doi.org/10.4213/mzm12778}
\elib{https://elibrary.ru/item.asp?id=47518761}
\transl
\jour Math. Notes
\yr 2021
\vol 109
\issue 1
\pages 120--124
\crossref{https://doi.org/10.1134/S0001434621010144}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000670512900014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118100193}
Linking options:
  • https://www.mathnet.ru/eng/mzm12778
  • https://doi.org/10.4213/mzm12778
  • https://www.mathnet.ru/eng/mzm/v109/i1/p129
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025