Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 63, Issue 5, Pages 697–708
DOI: https://doi.org/10.4213/mzm1336
(Mi mzm1336)
 

This article is cited in 1 scientific paper (total in 1 paper)

Diffusion instability of a uniform cycle bifurcating from a separatrix loop

A. Yu. Kolesov

P. G. Demidov Yaroslavl State University
Full-text PDF (640 kB) Citations (1)
References:
Abstract: We consider the boundary value problem
$$ \frac{\partial u}{\partial t} =D\frac{\partial^2u}{\partial x^2}+F(u,\mu), \qquad\frac{\partial u}{\partial x}\Big|_{x=0} =\frac{\partial u}{\partial x}\Big|_{x=\pi}=0. $$
Here $u\in\mathbb R^2$, $D=\operatorname{diag}\{d_1,d_2\}$, $d_1,d_2>0$, and the function $F$ is jointly smooth in $(u,\mu)$ and satisfies the following condition: for $0<\mu\ll1$ the boundary value problem has a homogeneous (independent of $x$) cycle bifurcating from a loop of the separatrix of a saddle. We establish conditions for stability and instability of this cycle and give a geometric interpretation of these conditions.
Received: 04.12.1996
English version:
Mathematical Notes, 1998, Volume 63, Issue 5, Pages 614–623
DOI: https://doi.org/10.1007/BF02312842
Bibliographic databases:
UDC: 517.926
Language: Russian
Citation: A. Yu. Kolesov, “Diffusion instability of a uniform cycle bifurcating from a separatrix loop”, Mat. Zametki, 63:5 (1998), 697–708; Math. Notes, 63:5 (1998), 614–623
Citation in format AMSBIB
\Bibitem{Kol98}
\by A.~Yu.~Kolesov
\paper Diffusion instability of a uniform cycle bifurcating from a separatrix loop
\jour Mat. Zametki
\yr 1998
\vol 63
\issue 5
\pages 697--708
\mathnet{http://mi.mathnet.ru/mzm1336}
\crossref{https://doi.org/10.4213/mzm1336}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1683643}
\zmath{https://zbmath.org/?q=an:0919.35064}
\transl
\jour Math. Notes
\yr 1998
\vol 63
\issue 5
\pages 614--623
\crossref{https://doi.org/10.1007/BF02312842}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000076726600008}
Linking options:
  • https://www.mathnet.ru/eng/mzm1336
  • https://doi.org/10.4213/mzm1336
  • https://www.mathnet.ru/eng/mzm/v63/i5/p697
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025