Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 113, Issue 6, Pages 863–875
DOI: https://doi.org/10.4213/mzm13431
(Mi mzm13431)
 

This article is cited in 1 scientific paper (total in 1 paper)

On a Refinement of the Schneider–Lang theorem

V. A. Podkopaeva, A. Ya. Yanchenko

National Research University "Moscow Power Engineering Institute"
Full-text PDF (546 kB) Citations (1)
References:
Abstract: We consider some arithmetic properties of values of meromorphic functions $g_1(z)$, …, $g_m(z)$ such that each of $g'_i(z)$ is algebraically dependent over a field $K$ of algebraic numbers, $[K:\mathbb Q]<\infty$, with the functions $g_1(z),\dots,g_m(z)$. We show that if all $\{g_i(z)\}$ are meromorphic of finite order, then either they all are rational functions, or they all are rational functions of some exponential, or they all are elliptic functions, or there exists a discrete set $U$ such that the number of points $z\notin U$ such that all $\{g_i( z)\}$ lie in $K$ is finite.
Keywords: meromorphic function, rational function.
Received: 27.01.2022
Revised: 27.12.2022
Published: 01.06.2023
English version:
Mathematical Notes, 2023, Volume 113, Issue 6, Pages 804–814
DOI: https://doi.org/10.1134/S000143462305022X
Bibliographic databases:
Document Type: Article
UDC: 511.464
MSC: 11J81
Language: Russian
Citation: V. A. Podkopaeva, A. Ya. Yanchenko, “On a Refinement of the Schneider–Lang theorem”, Mat. Zametki, 113:6 (2023), 863–875; Math. Notes, 113:6 (2023), 804–814
Citation in format AMSBIB
\Bibitem{PodYan23}
\by V.~A.~Podkopaeva, A.~Ya.~Yanchenko
\paper On a Refinement of the Schneider--Lang theorem
\jour Mat. Zametki
\yr 2023
\vol 113
\issue 6
\pages 863--875
\mathnet{http://mi.mathnet.ru/mzm13431}
\crossref{https://doi.org/10.4213/mzm13431}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4602444}
\transl
\jour Math. Notes
\yr 2023
\vol 113
\issue 6
\pages 804--814
\crossref{https://doi.org/10.1134/S000143462305022X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85163214497}
Linking options:
  • https://www.mathnet.ru/eng/mzm13431
  • https://doi.org/10.4213/mzm13431
  • https://www.mathnet.ru/eng/mzm/v113/i6/p863
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025