|
This article is cited in 3 scientific papers (total in 3 papers)
Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and $q$-Bessel Fourier Transform
S. S. Volosivets, Yu. I. Krotova Saratov State University
Abstract:
Necessary and sufficient conditions for a function $f$ to belong to the generalized Lipschitz classes $H^{m,\omega}_{q,\nu}$ and $h^{m,\omega}_{q,\nu}$ for fractional $m$ are given in terms of its $q$-Bessel–Fourier transform $\mathcal F_{q,\nu}(f)$. Dual results are considered as well. An analog of the Titchmarsh theorem for fractional-order differences is proved.
Keywords:
generalized Lipschitz class, Fourier transform, $q$-Bessel–Fourier transform.
Received: 26.02.2022 Revised: 10.03.2022
Published: 07.07.2023
Citation:
S. S. Volosivets, Yu. I. Krotova, “Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and $q$-Bessel Fourier Transform”, Mat. Zametki, 114:1 (2023), 68–80; Math. Notes, 114:1 (2023), 55–65
Linking options:
https://www.mathnet.ru/eng/mzm13467https://doi.org/10.4213/mzm13467 https://www.mathnet.ru/eng/mzm/v114/i1/p68
|
|