Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 113, Issue 3, Pages 453–460
DOI: https://doi.org/10.4213/mzm13489
(Mi mzm13489)
 

Local Extremal Interpolation on the Semiaxis with the Least Value of the Norm for a Linear Differential Operator

V. T. Shevaldin

N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: On a uniform grid of nodes on the semiaxis $[0;+\infty)$, a generalization is considered of Yu. N. Subbotin's problem of local extremal functional interpolation of numerical sequences $y=\{y_k\}_{k=0}^\infty$ that have bounded generalized finite differences corresponding to a linear differential operator $\mathscr L_n$ of order $n$ and whose first terms $y_0,y_1,\dots$, $y_{s-1}$ are predefined. Here it is required to find an $n$ times differentiable function $f$ such that $f(kh)=y_k$ $(k\in\mathbb Z_+,h>0)$ which has the least norm of the operator $\mathscr L_n$ in the space $L_\infty$. For linear differential operators with constant coefficients for which all roots of the characteristic polynomial are real and pairwise distinct, it is proved that this least norm is finite only in the case of $s\ge n$.
Keywords: local interpolation, differential operator, generalized finite difference, semiaxis, uniform grid.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-874
This work was carried out as part of the research conducted at the Ural Mathematical Center with the financial support by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-02-2022-874).
Received: 12.03.2022
Revised: 04.10.2022
Published: 27.02.2023
English version:
Mathematical Notes, 2023, Volume 113, Issue 3, Pages 446–452
DOI: https://doi.org/10.1134/S0001434623030148
Bibliographic databases:
Document Type: Article
UDC: 519.65
MSC: 41A15
Language: Russian
Citation: V. T. Shevaldin, “Local Extremal Interpolation on the Semiaxis with the Least Value of the Norm for a Linear Differential Operator”, Mat. Zametki, 113:3 (2023), 453–460; Math. Notes, 113:3 (2023), 446–452
Citation in format AMSBIB
\Bibitem{She23}
\by V.~T.~Shevaldin
\paper Local Extremal Interpolation on the Semiaxis with the Least Value of the Norm for a Linear Differential Operator
\jour Mat. Zametki
\yr 2023
\vol 113
\issue 3
\pages 453--460
\mathnet{http://mi.mathnet.ru/mzm13489}
\crossref{https://doi.org/10.4213/mzm13489}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4582566}
\transl
\jour Math. Notes
\yr 2023
\vol 113
\issue 3
\pages 446--452
\crossref{https://doi.org/10.1134/S0001434623030148}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85160334751}
Linking options:
  • https://www.mathnet.ru/eng/mzm13489
  • https://doi.org/10.4213/mzm13489
  • https://www.mathnet.ru/eng/mzm/v113/i3/p453
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025