Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 113, Issue 4, Pages 517–528
DOI: https://doi.org/10.4213/mzm13645
(Mi mzm13645)
 

This article is cited in 15 scientific papers (total in 15 papers)

Differential and Integral Operations in Hidden Spherical Symmetry and the Dimension of the Koch Curve

L. N. Lyakhovabc, E. Saninaa

a Voronezh State University
b Lipetsk State Pedagogical University
c I. A. Bunin Elets State University
References:
Abstract: Examples of differential and integral operations are given whose dimension is modified as a result of the introduction of new radial variables. Based on the integral measure $x^\gamma\,dx$, $\gamma>-1$, with a weak singularity, we introduce an operator that is interpreted as the Laplace operator in the space of functions of a fractional number of variables. The integration with respect to the measure $x^\gamma\,dx$, $\gamma>-1$, can also be interpreted as the integration over a domain of fractional dimension. The coefficient $\gamma>-1$ of hidden spherical symmetry is introduced. A formula is obtained that relates this coefficient to the Hausdorff dimension of a set in $\mathbb{R}_n$ and the Euclidean dimension $n$. The existence of hidden spherical symmetries is verified by calculating the dimension of the $m$th generation of the Koch curve for arbitrary positive integer $m$.
Keywords: Laplace operator, Kipriyanov operator, Laplace–Bessel–Kipriyanov operator, singular differential Bessel operator, fractional dimension, fractal, self-similarity, integral measure, Hausdorff dimension, Hausdorff–Besikovich dimension, fractal dimension, Koch curve, generations of the Koch curve.
Received: 04.07.2022
Revised: 03.09.2022
Published: 05.04.2023
English version:
Mathematical Notes, 2023, Volume 113, Issue 4, Pages 502–511
DOI: https://doi.org/10.1134/S0001434623030227
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: L. N. Lyakhov, E. Sanina, “Differential and Integral Operations in Hidden Spherical Symmetry and the Dimension of the Koch Curve”, Mat. Zametki, 113:4 (2023), 517–528; Math. Notes, 113:4 (2023), 502–511
Citation in format AMSBIB
\Bibitem{LyaSan23}
\by L.~N.~Lyakhov, E.~Sanina
\paper Differential and Integral Operations in Hidden Spherical Symmetry and the Dimension of the Koch Curve
\jour Mat. Zametki
\yr 2023
\vol 113
\issue 4
\pages 517--528
\mathnet{http://mi.mathnet.ru/mzm13645}
\crossref{https://doi.org/10.4213/mzm13645}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4582574}
\transl
\jour Math. Notes
\yr 2023
\vol 113
\issue 4
\pages 502--511
\crossref{https://doi.org/10.1134/S0001434623030227}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85160434236}
Linking options:
  • https://www.mathnet.ru/eng/mzm13645
  • https://doi.org/10.4213/mzm13645
  • https://www.mathnet.ru/eng/mzm/v113/i4/p517
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025