Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 5, paper published in the English version journal (Mi mzm13664)  

This article is cited in 1 scientific paper (total in 1 paper)

Papers published in the English version of the journal

Complete Shrinking General Ricci Flow Soliton Systems

Sh. Azami

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin
Citations (1)
Abstract: In this paper, we show that a complete shrinking general Ricci flow soliton system $(M,g,H,X,u,\lambda)$ with condition $h\geq0$ is compact if and only if $||X|| $ is bounded on $M$, where $h$ is the 2-form with components $h_{ij}=\frac{1}{2}H_{ikl}H_{j}^{kl}$. We also prove that a complete shrinking general Ricci flow system soliton has finite fundamental group.
Keywords: general Ricci flow, Ricci soliton, fundamental group.
Received: 14.07.2022
Revised: 18.09.2023
Published: 13.11.2023
English version:
Mathematical Notes, 2023, Volume 114, Issue 5, Pages 675–678
DOI: https://doi.org/10.1134/S0001434623110044
Bibliographic databases:
Document Type: Article
MSC: 53E20, 14H30
Language: English
Citation: Sh. Azami, “Complete Shrinking General Ricci Flow Soliton Systems”, Math. Notes, 114:5 (2023), 675–678
Citation in format AMSBIB
\Bibitem{Aza23}
\by Sh.~Azami
\paper Complete Shrinking General Ricci Flow Soliton Systems
\jour Math. Notes
\yr 2023
\vol 114
\issue 5
\pages 675--678
\mathnet{http://mi.mathnet.ru/mzm13664}
\crossref{https://doi.org/10.1134/S0001434623110044}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85187902654}
Linking options:
  • https://www.mathnet.ru/eng/mzm13664
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025