Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 1, Pages 81–93
DOI: https://doi.org/10.4213/mzm13758
(Mi mzm13758)
 

Analog of Schoenberg's Theorem for $a$-Conditionally Negative Definite Matrix-Valued Kernels

V. P. Zastavnyi

Donetsk National University
References:
Abstract: Schoenberg's classical 1938 theorem asserts that, given a function $\rho\colon G\times G\to\mathbb{C}$, the function $\exp(-t\rho)$ is a positive definite kernel on $G\times G$ for any $t>0$ if and only if the kernel $\rho$ is Hermitian and negative definite on $G\times G$. An analog of this theorem for matrices was essentially proved by C. Löwner in 1966. Recently (in 2021), C. Dörr and M. Schlather obtained an analog of Schoenberg's theorem for real matrix-valued functions $\rho(x)$, $x\in \mathbb{R}^d$. This analog refers to conditionally negative definite matrix-valued functions. In the present paper, $a$-conditionally negative definite matrix-valued kernels $\rho$ on $G\times G$ for which an analog of Schoenberg's theorem holds are introduced and studied. The following more general problem is also considered: for what functions $f$ and $g$ and matrix-valued kernels $\rho$ on $G\times G$ is the function $f(tg(\rho))$ a positive definite matrix-valued kernel on $G\times G$ for any $t>0$? Necessary conditions, sufficient conditions, and examples of such functions are given.
Keywords: positive definite matrix-valued kernel, conditionally negative definite matrix-valued kernel, completely monotone function, Bernstein function, Schoenberg's theorem.
Received: 10.10.2022
Revised: 05.02.2023
Published: 07.07.2023
English version:
Mathematical Notes, 2023, Volume 114, Issue 1, Pages 66–76
DOI: https://doi.org/10.1134/S0001434623070064
Bibliographic databases:
Document Type: Article
UDC: 517.5+519.213
MSC: 42A82
Language: Russian
Citation: V. P. Zastavnyi, “Analog of Schoenberg's Theorem for $a$-Conditionally Negative Definite Matrix-Valued Kernels”, Mat. Zametki, 114:1 (2023), 81–93; Math. Notes, 114:1 (2023), 66–76
Citation in format AMSBIB
\Bibitem{Zas23}
\by V.~P.~Zastavnyi
\paper Analog of Schoenberg's Theorem for $a$-Conditionally Negative Definite Matrix-Valued Kernels
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 1
\pages 81--93
\mathnet{http://mi.mathnet.ru/mzm13758}
\crossref{https://doi.org/10.4213/mzm13758}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4634772}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 1
\pages 66--76
\crossref{https://doi.org/10.1134/S0001434623070064}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85168673119}
Linking options:
  • https://www.mathnet.ru/eng/mzm13758
  • https://doi.org/10.4213/mzm13758
  • https://www.mathnet.ru/eng/mzm/v114/i1/p81
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025