Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 113, Issue 6, Pages 849–862
DOI: https://doi.org/10.4213/mzm13759
(Mi mzm13759)
 

This article is cited in 2 scientific papers (total in 2 papers)

Improvement of Nonmonotone Complexity Estimates of $k$-Valued Logic Functions

V. V. Kocherginabc, A. V. Mikhailovichbc

a Lomonosov Moscow State University
b HSE University, Moscow
c Moscow Center for Fundamental and Applied Mathematics
Full-text PDF (579 kB) Citations (2)
References:
Abstract: The problem of determining the nonmonotone complexity of the implementation of $k$-valued logic functions by logic circuits in bases consisting of all monotone (with respect to the standard order) functions and finitely many nonmonotone functions is investigated. In calculating the complexity measure under examination only those elements of the circuit which are assigned nonmonotone basis functions are taken into account. The nonmonotone complexity of an arbitrary $k$-valued logic function is determined with high accuracy, namely, upper and lower bounds which differ by a constant not exceeding $3 \log_2 k+4$ are found.
Keywords: multi-valued logic function, logic circuit, circuit complexity, bases with zero weight elements, nonmonotone complexity, inversion complexity, Markov's theorem.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-284
This work was supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of a program of the Moscow Center for Fundamental and Applied Mathematics (contract no. 075-15-2022-284).
Received: 10.10.2022
Published: 01.06.2023
English version:
Mathematical Notes, 2023, Volume 113, Issue 6, Pages 794–803
DOI: https://doi.org/10.1134/S0001434623050218
Bibliographic databases:
Document Type: Article
UDC: 519.714
Language: Russian
Citation: V. V. Kochergin, A. V. Mikhailovich, “Improvement of Nonmonotone Complexity Estimates of $k$-Valued Logic Functions”, Mat. Zametki, 113:6 (2023), 849–862; Math. Notes, 113:6 (2023), 794–803
Citation in format AMSBIB
\Bibitem{KocMik23}
\by V.~V.~Kochergin, A.~V.~Mikhailovich
\paper Improvement of Nonmonotone Complexity Estimates of $k$-Valued Logic Functions
\jour Mat. Zametki
\yr 2023
\vol 113
\issue 6
\pages 849--862
\mathnet{http://mi.mathnet.ru/mzm13759}
\crossref{https://doi.org/10.4213/mzm13759}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4602442}
\transl
\jour Math. Notes
\yr 2023
\vol 113
\issue 6
\pages 794--803
\crossref{https://doi.org/10.1134/S0001434623050218}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85162730671}
Linking options:
  • https://www.mathnet.ru/eng/mzm13759
  • https://doi.org/10.4213/mzm13759
  • https://www.mathnet.ru/eng/mzm/v113/i6/p849
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025