Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 112, Issue 5, paper published in the English version journal (Mi mzm13787)  

Papers published in the English version of the journal

Multiple Solutions for a Singular Problem Involving the Fractional $p$-$q$-Laplacian Operator

A. Ghanmia, T. Kenzizia, N. T. Chungb

a Department of Mathematics, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092 Tunisia
b Department of Mathematics, Quang Binh University, Ly Thuong Kiet, Dong Hoi, Quang Binh, 312 Viet Nam
Abstract: This paper deals with the following singular problem:
\begin{align*} \begin{cases} (-\Delta)^s_p u+ \mu(-\Delta)^s_q u =\frac{a(x)}{ u^\gamma} +\lambda f(x,u) &\text{ in }\,\Omega,\\ u = 0,&\text{ in }\,\mathbb{R}^N\setminus\Omega, \end{cases} \end{align*}
where $\Omega\subset\mathbb{R}^N$ ($N\geq 3$) are a bounded smooth domain, $f\in C(\Omega\times \mathbb{R}, \mathbb{R})$ is positively homogeneous of degree $r-1$, $a\in L^\infty(\Omega)$, $a(x)>0$ for almost every $x\in \Omega$, $\lambda$, $\mu >0$, $s\in(0,1)$, $N> ps$, and $0<\gamma<1<q<p<r<p^*_s$. Under appropriate conditions on the function $f$, we establish the existence of multiple solutions by using the Nehari manifold method.
Keywords: fractional $p$-$q$-Laplacian operator, singular problems, Nehari manifold method.
Received: 18.12.2021
Revised: 11.05.2022
Published: 31.10.2022
English version:
Mathematical Notes, 2022, Volume 112, Issue 5, Pages 664–673
DOI: https://doi.org/10.1134/S0001434622110049
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. Ghanmi, T. Kenzizi, N. T. Chung, “Multiple Solutions for a Singular Problem Involving the Fractional $p$-$q$-Laplacian Operator”, Math. Notes, 112:5 (2022), 664–673
Citation in format AMSBIB
\Bibitem{GhaKenChu22}
\by A.~Ghanmi, T.~Kenzizi, N.~T.~Chung
\paper Multiple Solutions for a Singular Problem
Involving the Fractional
$p$-$q$-Laplacian Operator
\jour Math. Notes
\yr 2022
\vol 112
\issue 5
\pages 664--673
\mathnet{http://mi.mathnet.ru/mzm13787}
\crossref{https://doi.org/10.1134/S0001434622110049}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4529607}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85145379334}
Linking options:
  • https://www.mathnet.ru/eng/mzm13787
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025