Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 112, Issue 6, paper published in the English version journal (Mi mzm13825)  

This article is cited in 1 scientific paper (total in 1 paper)

Papers published in the English version of the journal

Results on the Existence and Multiplicity of Solutions for a Class of Sublinear Degenerate Schrödinger Equations in $\mathbb{R}^N$

Bui Kim My

Faculty of Primary Education, Hanoi Pedagogical University 2, Vinh Phuc, 283460 Vietnam
Citations (1)
Abstract: In this paper, we study the existence and multiplicity of nontrivial solutions of the semilinear degenerate Schrödinger equation
$$ -\mathcal{L}u + V(x)u = f(x,u),\qquad x\in \mathbb{R}^N,\quad N\ge 3, $$
where $V$ is a potential function defined on $\mathbb{R}^N$ and the nonlinearity $f$ is of sublinear growth and satisfies some appropriate conditions to be specified later. Here $\mathcal{L}$ is an $X$-elliptic operator with respect to a family $X = \{X_1, \ldots, X_m\}$ of locally Lipschitz continuous vector fields. We apply the Ekeland variational principle and a version of the fountain theorem in the proofs of our main existence results. Our main results extend and improve some recent ones in the literature.
Keywords: Sublinear Schrödinger equation, $X$-elliptic operator, fountain theorem, variational method.
Received: 03.06.2022
Revised: 19.07.2022
Published: 04.12.2022
English version:
Mathematical Notes, 2022, Volume 112, Issue 6, Pages 845–860
DOI: https://doi.org/10.1134/S0001434622110190
Bibliographic databases:
Document Type: Article
Language: English
Citation: Bui Kim My, “Results on the Existence and Multiplicity of Solutions for a Class of Sublinear Degenerate Schrödinger Equations in $\mathbb{R}^N$”, Math. Notes, 112:6 (2022), 845–860
Citation in format AMSBIB
\Bibitem{My22}
\by Bui Kim My
\paper Results on the Existence and Multiplicity of Solutions for a Class
of Sublinear Degenerate Schr\"{o}dinger Equations
in $\mathbb{R}^N$
\jour Math. Notes
\yr 2022
\vol 112
\issue 6
\pages 845--860
\mathnet{http://mi.mathnet.ru/mzm13825}
\crossref{https://doi.org/10.1134/S0001434622110190}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4529614}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85145421780}
Linking options:
  • https://www.mathnet.ru/eng/mzm13825
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025