Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 112, Issue 6, paper published in the English version journal (Mi mzm13826)  

This article is cited in 1 scientific paper (total in 1 paper)

Papers published in the English version of the journal

Pell and Pell–Lucas Numbers as Product of Two Repdigits

F. Erduvana, R. Keskinb

a MEB, Namik Kemal High School, Kocaeli, 41100 Turkey
b Sakarya University, Sakarya, 54100 Turkey
Citations (1)
Abstract: In this study, we find all Pell and Pell–Lucas numbers that are product of two repdigits in the base $b$ for $b\in[2,10]$. It is shown that the largest Pell and Pell–Lucas numbers that can be expressed as a product of two repdigits are $P_{7}=169$ and $Q_{6}=198$, respectively. Also, we have the representations
$$ P_{7}=169=(111)_{3}\times(111)_{3}$$
and
$$ Q_{6}=198=2\times99=3\times66=6\times33=9\times22. $$
Furthermore, it is shown in the paper that the equation $P_{k}=(b^{n}-1)(b^{m}-1)$ has only the solution $(b,k,m,n)=(2,1,1,1)$ and the equation $Q_{k}=(b^{n}-1)(b^{m}-1)$ has no solution $(b,k,m,n)$ in positive integers for $2\leq$ $b\leq10$. The proofs depend on lower bounds for linear forms and some tools from Diophantine approximation.
Keywords: Pell number, Pell–Lucas number, repdigit, Diophantine equation, linear form in logarithms.
Received: 26.05.2022
Published: 04.12.2022
English version:
Mathematical Notes, 2022, Volume 112, Issue 6, Pages 861–871
DOI: https://doi.org/10.1134/S0001434622110207
Bibliographic databases:
Document Type: Article
Language: English
Citation: F. Erduvan, R. Keskin, “Pell and Pell–Lucas Numbers as Product of Two Repdigits”, Math. Notes, 112:6 (2022), 861–871
Citation in format AMSBIB
\Bibitem{ErdKes22}
\by F.~Erduvan, R.~Keskin
\paper Pell and Pell--Lucas Numbers as Product of Two Repdigits
\jour Math. Notes
\yr 2022
\vol 112
\issue 6
\pages 861--871
\mathnet{http://mi.mathnet.ru/mzm13826}
\crossref{https://doi.org/10.1134/S0001434622110207}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4529615}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85145360665}
Linking options:
  • https://www.mathnet.ru/eng/mzm13826
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025