Abstract:
We establish a transcendence criterion for a class of quasi-periodic Ruban $p$-adic continued fractions. We prove that a $p$-adic number whose partial quotients sequence is quasi-periodic and bounded in the $p$-adic field $\mathbb{Q}_p$ is either quadratic or transcendental.
Keywords:
continued fraction, $p$-adic number, transcendence, subspace theorem.
\Bibitem{Amm23}
\by B.~Ammous
\paper On the Maillet--Baker Ruban Continued Fractions in the $p$-Adic Field
\jour Math. Notes
\yr 2023
\vol 114
\issue 5
\pages 659--667
\mathnet{http://mi.mathnet.ru/mzm14030}
\crossref{https://doi.org/10.1134/S0001434623110020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85187867268}