Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2025, Volume 117, Issue 1, Pages 151–162
DOI: https://doi.org/10.4213/mzm14265
(Mi mzm14265)
 

On a refinement of the Schneider–Lang theorem. II. The arithmetic of the degenerate case

A. Ya. Yanchenko

National Research University "Moscow Power Engineering Institute"
References:
Abstract: Arithmetic properties of the values of meromorphic functions $g_1(z),\dots,g_n(z)$ of finite order such that each derivative $g'_i(z)$ depends algebraically on the functions $g_1(z),\dots,g_n(z)$ over an algebraic number field $K$ with $[K:\mathbb{Q}]<+\infty$ are considered. It is shown that if the transcendence degree of the field $\mathbb{C}(g_1(z),\dots,g_n(z))$ equals 1 and there exists a $z_0\in\mathbb{C}$ at which $g_i(z_0)\in K$ for all $i$, then the functions $g_i(z)$ are of one of the forms $\{R_i(z-z_0)\}$, $\{R_i(e^{\alpha(z-z_0)})\}$, and $\bigl\{R_{i,1}\bigl(\wp(z-z_0+{\omega_1}/{2})\bigl)+ \wp'\bigl(z-z_0+{\omega_1}/{2}\bigl) R_{i,2}\bigl(\wp(z-z_0+{\omega_1}/{2})\bigl)\bigr\}$ (where all $R_{i,j}(t)$ and $R_i(t)$ are rational functions with coefficients in a field $K_1$ such that $[K_1:K]<+\infty$, $\alpha\in K_1$, and $\wp(z)$ is the Weierstrass elliptic function one of whose period is $\omega_1$ with algebraic (belonging to $K_1$) invariants $g_2$ and $g_3$).
Keywords: Schneider–Lang theorem, meromorphic function.
Funding agency Grant number
Russian Science Foundation 24-21-00196
This work was financially supported by the Russian Science Foundation, project 24-21-00196, https://rscf.ru/en/project/24-21-00196/.
Received: 20.02.2024
Revised: 20.05.2024
Published: 13.05.2025
English version:
Mathematical Notes, 2025, Volume 117, Issue 1, Pages 158–167
DOI: https://doi.org/10.1134/S0001434625010158
Bibliographic databases:
Document Type: Article
UDC: 511.464
MSC: 11J81
Language: Russian
Citation: A. Ya. Yanchenko, “On a refinement of the Schneider–Lang theorem. II. The arithmetic of the degenerate case”, Mat. Zametki, 117:1 (2025), 151–162; Math. Notes, 117:1 (2025), 158–167
Citation in format AMSBIB
\Bibitem{Yan25}
\by A.~Ya.~Yanchenko
\paper On a refinement of the Schneider--Lang theorem. II. The arithmetic of the degenerate case
\jour Mat. Zametki
\yr 2025
\vol 117
\issue 1
\pages 151--162
\mathnet{http://mi.mathnet.ru/mzm14265}
\crossref{https://doi.org/10.4213/mzm14265}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4908563}
\transl
\jour Math. Notes
\yr 2025
\vol 117
\issue 1
\pages 158--167
\crossref{https://doi.org/10.1134/S0001434625010158}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105007238217}
Linking options:
  • https://www.mathnet.ru/eng/mzm14265
  • https://doi.org/10.4213/mzm14265
  • https://www.mathnet.ru/eng/mzm/v117/i1/p151
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025