Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2025, Volume 117, Issue 1, Pages 99–109
DOI: https://doi.org/10.4213/mzm14268
(Mi mzm14268)
 

On the torsion in the group $F/[M,N]$ in the case of combinatorial asphericity of the groups $F/M$ and $F/N$

O. V. Kulikovaab

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics
References:
Abstract: Let $F$ be a nonabelian free group with basis $A$, and let $M$ and $N$ be the normal closures of sets $R_M$ and $R_N$ of words in the alphabet $A^{\pm 1}$. As is known, there is no torsion in the group $F/[N,N]$; however, in general, a torsion in $F/[M, N]$ is possible. In the paper by Kuz'min and Hartley (1991), it was proved that if $R_M=\{v\}$, $R_N=\{w\}$, and the words $v$ and $w$ are not proper powers in $F$, then there is no torsion in $F/[M,N]$. In this paper, we obtain a sufficient condition for the absence of torsion in $F/[M,N]$, which enables us to generalize the result of Kuz'min and Hartley to arbitrary words $v$ and $w$.
Keywords: quotient group by a mutual commutant, asphericity, torsion.
Funding agency Grant number
Russian Science Foundation 22-11-00075
This work was financially supported by the Russian Science Foundation, project 22-11-00075, https://rscf.ru/en/project/22-11-00075/.
Received: 23.02.2024
Revised: 29.06.2024
Published: 13.05.2025
English version:
Mathematical Notes, 2025, Volume 117, Issue 1, Pages 114–122
DOI: https://doi.org/10.1134/S0001434625010109
Bibliographic databases:
Document Type: Article
UDC: 512.543
MSC: 20F05,20F06
Language: Russian
Citation: O. V. Kulikova, “On the torsion in the group $F/[M,N]$ in the case of combinatorial asphericity of the groups $F/M$ and $F/N$”, Mat. Zametki, 117:1 (2025), 99–109; Math. Notes, 117:1 (2025), 114–122
Citation in format AMSBIB
\Bibitem{Kul25}
\by O.~V.~Kulikova
\paper On the torsion in the~group $F/[M,N]$ in the~case of combinatorial asphericity of~the~groups $F/M$ and $F/N$
\jour Mat. Zametki
\yr 2025
\vol 117
\issue 1
\pages 99--109
\mathnet{http://mi.mathnet.ru/mzm14268}
\crossref{https://doi.org/10.4213/mzm14268}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4908558}
\transl
\jour Math. Notes
\yr 2025
\vol 117
\issue 1
\pages 114--122
\crossref{https://doi.org/10.1134/S0001434625010109}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105007245316}
Linking options:
  • https://www.mathnet.ru/eng/mzm14268
  • https://doi.org/10.4213/mzm14268
  • https://www.mathnet.ru/eng/mzm/v117/i1/p99
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025