|
|
Matematicheskie Zametki, 2023, Volume 114, Issue 6, paper published in the English version journal
(Mi mzm14285)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Computing Periodic and Antiperiodic Eigenvalues with a PT-Symmetric Optical Potential
C. Nur Department of Computer Engineering, Yalova University, Yalova, 77200 Türkiye
Abstract:
We give estimates for the eigenvalues of nonself-adjoint Sturm–Liouville operators with periodic and antiperiodic boundary conditions for the special potential $4\cos^{2}x+4iV\sin2x$ that is a PT-symmetric optical potential, especially when $|\sqrt{1-4V^{2}}|<3$ or equally $0\leq V<\sqrt{10}/2$. We provide some useful equations for calculating the periodic and antiperiodic eigenvalues. We even approximate complex eigenvalues by the roots of some polynomials derived from some iteration formulas. Moreover, we give a numerical example with error analysis.
Keywords:
eigenvalue estimate, periodic boundary conditions, antiperiodic boundary conditions, PT-symmetric optical potential.
Received: 26.11.2022 Revised: 29.03.2023
Published: 27.02.2024
Citation:
C. Nur, “Computing Periodic and Antiperiodic Eigenvalues with a PT-Symmetric Optical Potential”, Math. Notes, 114:6 (2023), 1401–1417
Linking options:
https://www.mathnet.ru/eng/mzm14285
|
|