Abstract:
A class of groups $\mathcal{S}^{p}$ containing every group $G$ whose any $pd$-chief factor $A/B$ of $G$ satisfies $| \Phi\bigl((A/B)_{p}\bigr)| \leqslant p$. We call a subgroup $H$ is a $\operatorname{CAP}_{\mathcal{S}^{p}}$-subgroup of a finite group $G$ if for any $pd$-chief factor $A/B$ of $G$, we have either $HA=HB$ or $| \Phi\bigl((H\cap A/H\cap B)_{p}\bigr)| \leqslant p$. Some characterizations for a finite group belongs to $\mathcal{S}^{p}$ are obtained under the assumption that some of its second maximal subgroups have generalized cover and avoidance properties.
Keywords:
maximal subgroups, second maximal subgroups, generalized cover and avoidance properties, $p$-local groups class.
Fundamental Research Funds for the Central Universities
1014/423135
Natural Science Foundation of the Higher Education Institutions of Jiangsu Province
22KJB110024
This research is supported by NSFC (grant nos. 12371018, 12201236),
The Fundamental Research Funds for the Central Universities (grant no. 1014/423135) and
Natural Science Foundation of the Higher Education Institutions of Jiangsu
Province (grant no. 22KJB110024).
Citation:
W. Liu, H. Chen, J. Tang, S. Dong, “A new generalized $p$-local class of groups $\mathcal{S}^{p}$ and its properties”, Math. Notes, 116:4 (2024), 685–696
\Bibitem{LiuCheTan24}
\by W.~Liu, H.~Chen, J.~Tang, S.~Dong
\paper A new generalized $p$-local class of groups $\mathcal{S}^{p}$ and its properties
\jour Math. Notes
\yr 2024
\vol 116
\issue 4
\pages 685--696
\mathnet{http://mi.mathnet.ru/mzm14303}
\crossref{https://doi.org/10.1134/S0001434624090268}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85213572401}