Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2025, Volume 117, Issue 3, Pages 344–364
DOI: https://doi.org/10.4213/mzm14305
(Mi mzm14305)
 

Modal companions for the special extensions of Nelson's constructive logic

A. G. Vishnevaa, S. P. Odintsovb

a Novosibirsk State University
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: The Belnapian version $\mathsf{BS4}$ of the normal modal logic $\mathsf{S4}$ is related to Nelson's constructive logic $\mathsf{N4}^{\bot}$ in approximately the same way as the logic $\mathsf{S4}$ is related to the intuitionistic logic. For this reason, it is natural to define modal companions for logics extending $\mathsf{N4}^{\bot}$ as extensions of the Belnapian modal logic $\mathsf{BS4}$. It is proved that, for every special extension $L$ of $\mathsf{N4}^{\bot}$, the logic $\tau^BL$, where $\tau^B$ is a natural modification of the mapping $\tau$ assigning the least modal companion to each superintuitionistic logic, is the least modal companion of $L$ in the lattice of extensions of $\mathsf{BS4}$.
Keywords: strong negation, Nelson's logic, Belnapian modal logic, lattice of logics, modal companion, twist structure.
Funding agency Grant number
Russian Science Foundation 23-11-00104
The results of Secs. 3 and 5 were obtained by S. P. Odintsov and the results of Sec. 4, by A. G. Vishneva. The work of S. P. Odintsov was financially supported by the Russian Science Foundation, project 23-11-00104, https://rscf.ru/en/project/23-11-00104/, at Steklov Mathematical Institute of Russian Academy of Sciences.
Received: 07.03.2024
Revised: 30.09.2024
Published: 04.06.2025
English version:
Mathematical Notes, 2025, Volume 117, Issue 3, Pages 366–382
DOI: https://doi.org/10.1134/S0001434625030034
Bibliographic databases:
Document Type: Article
UDC: 510.64
MSC: 03B20, 03B45
Language: Russian
Citation: A. G. Vishneva, S. P. Odintsov, “Modal companions for the special extensions of Nelson's constructive logic”, Mat. Zametki, 117:3 (2025), 344–364; Math. Notes, 117:3 (2025), 366–382
Citation in format AMSBIB
\Bibitem{VisOdi25}
\by A.~G.~Vishneva, S.~P.~Odintsov
\paper Modal companions for the special extensions of Nelson's constructive logic
\jour Mat. Zametki
\yr 2025
\vol 117
\issue 3
\pages 344--364
\mathnet{http://mi.mathnet.ru/mzm14305}
\crossref{https://doi.org/10.4213/mzm14305}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4920210}
\transl
\jour Math. Notes
\yr 2025
\vol 117
\issue 3
\pages 366--382
\crossref{https://doi.org/10.1134/S0001434625030034}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105008234135}
Linking options:
  • https://www.mathnet.ru/eng/mzm14305
  • https://doi.org/10.4213/mzm14305
  • https://www.mathnet.ru/eng/mzm/v117/i3/p344
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025