Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2025, Volume 117, Issue 2, Pages 181–195
DOI: https://doi.org/10.4213/mzm14316
(Mi mzm14316)
 

Multipliers for the Calderón–Lozanovskii construction

E. I. Berezhnoiabc

a P.G. Demidov Yaroslavl State University
b Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan, Almaty
c Regional mathematical center of Southern Federal University, Rostov-on-Don
References:
Abstract: Using a new approach for the Calderón–Lozanovskii construction $\varphi (X, L^{\infty})$ involving an arbitrary ideal space $X$, a Lebesgue space $L^{\infty}$, and a concave function $\varphi$, an exact description of the multiplier space $M(\varphi_0 (X, L^{\infty}) \to \varphi_1 (X, L^{\infty}))$ is given, provided that the ratio ${{\varphi_0(\cdot, 1)} /{\varphi_1(\cdot, 1)}}$ does not increase. Namely, it is shown that the equality
$$ M(\varphi_0 (X, L^{\infty}) \to \varphi_1 (X, L^{\infty}))=\varphi_2 (X, L^{\infty}) $$
is satisfied, where the function $\varphi_2 $ is determined constructively from the functions $\varphi_0, \varphi_1$. The absence of restrictions on the ideal space $X$ and the exact description of the function $\varphi_2 $ enables us to apply the results thus obtained to a wide class of ideal spaces that are not symmetric and cannot be reduced to symmetric ones by an introduction of weight functions, for example, Morrey spaces.
Keywords: ideal Banach space, multiplier, Calderón–Lozanovskii construction.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP23488613
Ministry of Science and Higher Education of the Russian Federation 075-02-2024-142
The work was carried out with the financial support of the Ministry of Science and Higher Education of the Republic of Kazakhstan (grant no. AP23488613) and the Ministry of Science and Education of the Russian Federation (project no. 075-02-2024-1427).
Received: 19.03.2024
Revised: 16.05.2024
Published: 13.05.2025
English version:
Mathematical Notes, 2025, Volume 117, Issue 2, Pages 195–207
DOI: https://doi.org/10.1134/S0001434625010195
Bibliographic databases:
Document Type: Article
UDC: 517.5
PACS: 46E30, 46B42,42B0
Language: Russian
Citation: E. I. Berezhnoi, “Multipliers for the Calderón–Lozanovskii construction”, Mat. Zametki, 117:2 (2025), 181–195; Math. Notes, 117:2 (2025), 195–207
Citation in format AMSBIB
\Bibitem{Ber25}
\by E.~I.~Berezhnoi
\paper Multipliers for the Calder\'on--Lozanovskii construction
\jour Mat. Zametki
\yr 2025
\vol 117
\issue 2
\pages 181--195
\mathnet{http://mi.mathnet.ru/mzm14316}
\crossref{https://doi.org/10.4213/mzm14316}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4908566}
\transl
\jour Math. Notes
\yr 2025
\vol 117
\issue 2
\pages 195--207
\crossref{https://doi.org/10.1134/S0001434625010195}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105007246154}
Linking options:
  • https://www.mathnet.ru/eng/mzm14316
  • https://doi.org/10.4213/mzm14316
  • https://www.mathnet.ru/eng/mzm/v117/i2/p181
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025