Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 116, Issue 2, paper published in the English version journal (Mi mzm14317)  

This article is cited in 1 scientific paper (total in 1 paper)

Papers published in the English version of the journal

Boundedness of solutions of the Ginzburg–Landau system involving a subelliptic operator

Y. T. N. Haa, A. T. Duonga, N. Bietb

a School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, Vietnam
b Department of Education and Training of Phu Tho Province, Viet Tri, Phu Tho, Vietnam
Citations (1)
Abstract: The aim of this paper is to study the boundedness of solutions of the Ginzburg–Landau system
\begin{equation*} \begin{cases} \partial_t u -\Delta_\lambda u = u - u^3 - \gamma uv^2 & \text{in } \mathbb{R}\times \mathbb{R}^N, \\ \partial_t v -\Delta_\lambda v = v - v^3 - \gamma u^2v & \text{in }\mathbb{R}\times \mathbb{R}^N, \end{cases} \end{equation*}
where $\gamma>0$ and $\Delta_{\lambda}$ is the subelliptic operator
\begin{equation*} \sum_{i=1}^N \partial_{x_i}(\lambda_i^2\partial_{x_i}). \end{equation*}
In the stationary case, where the solutions are independent of the time variable, our result can be seen as an extension of some results in [A. Farina, B. Sciunzi, and N. Soave, Commun. Contemp. Math. 22 (5), Article no. 1950044 (2020)] from the Laplace operator to the subelliptic operator $\Delta_{\lambda}$.
Keywords: Qualitative property, Ginzburg–Landau system, parabolic system, elliptic system, boundedness of solutions, subelliptic operator.
Received: 21.03.2024
Revised: 21.03.2024
Published: 08.08.2024
English version:
Mathematical Notes, 2024, Volume 116, Issue 2, Pages 350–355
DOI: https://doi.org/10.1134/S0001434624070289
Bibliographic databases:
Document Type: Article
MSC: 35K40, 35B53, 35J60
Language: English
Citation: Y. T. N. Ha, A. T. Duong, N. Biet, “Boundedness of solutions of the Ginzburg–Landau system involving a subelliptic operator”, Math. Notes, 116:2 (2024), 350–355
Citation in format AMSBIB
\Bibitem{HaDuoBie24}
\by Y.~T.~N.~Ha, A.~T.~Duong, N.~Biet
\paper Boundedness of solutions of the Ginzburg--Landau system involving a subelliptic operator
\jour Math. Notes
\yr 2024
\vol 116
\issue 2
\pages 350--355
\mathnet{http://mi.mathnet.ru/mzm14317}
\crossref{https://doi.org/10.1134/S0001434624070289}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85207219424}
Linking options:
  • https://www.mathnet.ru/eng/mzm14317
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025