Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 115, Issue 4, paper published in the English version journal (Mi mzm14336)  

Papers published in the English version of the journal

Piercing Hyperplane Theorem

Burak Unverena, Guy Barokasb

a Yildiz Technical University, Istanbul
b The Interdisciplinary Research Center, Ruppin Academic Center, Kfar Monash, Israel
Abstract: We prove that any strictly convex and closed set in $\mathbb{R}^n$ is an affine subspace if it contains a hyperplane as a subset. In other words, no hyperplane fits into a strictly convex and closed set $C$ unless $C$ is flat. We also present certain applications of this result in economic theory reminiscent of the separating and supporting hyperplane theorems.
Keywords: convex geometry, mathematical economics.
Received: 13.02.2024
Revised: 13.02.2024
Published: 15.04.2024
English version:
Mathematical Notes, 2024, Volume 115, Issue 4, Pages 626–629
DOI: https://doi.org/10.1134/S0001434624030349
Bibliographic databases:
Document Type: Article
Language: English
Citation: Burak Unveren, Guy Barokas, “Piercing Hyperplane Theorem”, Math. Notes, 115:4 (2024), 626–629
Citation in format AMSBIB
\Bibitem{UnvBar24}
\by Burak Unveren, Guy Barokas
\paper Piercing Hyperplane Theorem
\jour Math. Notes
\yr 2024
\vol 115
\issue 4
\pages 626--629
\mathnet{http://mi.mathnet.ru/mzm14336}
\crossref{https://doi.org/10.1134/S0001434624030349}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4772175}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85197721191}
Linking options:
  • https://www.mathnet.ru/eng/mzm14336
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:121
    References:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025