Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2025, Volume 117, Issue 4, Pages 591–599
DOI: https://doi.org/10.4213/mzm14387
(Mi mzm14387)
 

Continuity theorems for a class of computable operators

M. Kh. Faizrahmanov

Kazan (Volga Region) Federal University
References:
Abstract: Computable operators corresponding to the concept of a left computably enumerable real number, called \textit{$\mathrm{L}$-operators}, are studied. Their continuity properties most commonly used in the constructive mathematical analysis of A. A. Markov's school are examined. It is proved that any $\mathrm{L}$-operator is nondecreasing and almost left continuous. An example of an $\mathrm{L}$-operator which is neither left continuous nor right pseudocontinuous at some point is constructed. An almost continuity criterion for an $\mathrm{L}$-operator is found. This criterion is used to prove that almost continuous $\mathrm{L}$-operators are not necessarily continuous or pseudouniformly continuous on a closed interval.
Keywords: constructive real number, left computably enumerable real number, pseudonumber, continuous operator, almost continuous operator, pseudocontinuous operator.
Funding agency Grant number
Russian Science Foundation 24-11-00227
This work was financially supported by the Russian Science Foundation, project 24-11-00227, https://rscf.ru/en/project/24-11-00227/.
Received: 28.05.2024
Revised: 08.07.2024
Published: 04.06.2025
English version:
Mathematical Notes, 2025, Volume 117, Issue 4, Pages 643–649
DOI: https://doi.org/10.1134/S0001434625030290
Bibliographic databases:
Document Type: Article
UDC: 510.57+510.25
MSC: 03D78, 03F60
Language: Russian
Citation: M. Kh. Faizrahmanov, “Continuity theorems for a class of computable operators”, Mat. Zametki, 117:4 (2025), 591–599; Math. Notes, 117:4 (2025), 643–649
Citation in format AMSBIB
\Bibitem{Fai25}
\by M.~Kh.~Faizrahmanov
\paper Continuity theorems for a class of computable operators
\jour Mat. Zametki
\yr 2025
\vol 117
\issue 4
\pages 591--599
\mathnet{http://mi.mathnet.ru/mzm14387}
\crossref{https://doi.org/10.4213/mzm14387}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4920230}
\transl
\jour Math. Notes
\yr 2025
\vol 117
\issue 4
\pages 643--649
\crossref{https://doi.org/10.1134/S0001434625030290}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105008250353}
Linking options:
  • https://www.mathnet.ru/eng/mzm14387
  • https://doi.org/10.4213/mzm14387
  • https://www.mathnet.ru/eng/mzm/v117/i4/p591
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:181
    Full-text PDF :1
    Russian version HTML:4
    References:33
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025