Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 116, Issue 6, Pages 941–946
DOI: https://doi.org/10.4213/mzm14499
(Mi mzm14499)
 

On the well-posed solvability of fractional operator equations by the Maslov–Heaviside method

A. V. Kostin, V. A. Kostin, D. V. Kostin

Voronezh State University
References:
Abstract: In the paper, for a fractional operator polynomial $P_n(A^\alpha)$, $\alpha\in(0,1)$, with a weakly positive operator $A$ acting on a Banach space, the problem of its bounded invertibility is posed and solved, which is equivalent to the correct Hadamard solvability of the corresponding operator equation. The problem is solved by the Maslov–Heaviside method, which was previously used by the authors in the case of integer powers of the operator $A$. This enables us to obtain an integral representation of the inverse operator of $P_n(A^\alpha)$ using the strongly continuous semigroup $U(t_1-A)$ with the generator $-A$ and to indicate a correctness estimate for this operator; this estimate connects the type of the semigroup with the roots of the scalar polynomial $P_n(x)$ (that was called by V. P. Maslov the symbol of the operator polynomial $P_n(A)$).
Using examples, we show the naturalness of applying the Maslov–Heaviside method to the study of the correct solvability of problems for differential equations.
Keywords: fractional powers of operators, strongly continuous semigroups, well-posed problems.
Received: 20.07.2024
Published: 06.12.2024
English version:
Mathematical Notes, 2024, Volume 116, Issue 6, Pages 1326–1331
DOI: https://doi.org/10.1134/S0001434624110385
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: A. V. Kostin, V. A. Kostin, D. V. Kostin, “On the well-posed solvability of fractional operator equations by the Maslov–Heaviside method”, Mat. Zametki, 116:6 (2024), 941–946; Math. Notes, 116:6 (2024), 1326–1331
Citation in format AMSBIB
\Bibitem{KosKosKos24}
\by A.~V.~Kostin, V.~A.~Kostin, D.~V.~Kostin
\paper On the well-posed solvability of fractional operator equations by the Maslov--Heaviside method
\jour Mat. Zametki
\yr 2024
\vol 116
\issue 6
\pages 941--946
\mathnet{http://mi.mathnet.ru/mzm14499}
\crossref{https://doi.org/10.4213/mzm14499}
\transl
\jour Math. Notes
\yr 2024
\vol 116
\issue 6
\pages 1326--1331
\crossref{https://doi.org/10.1134/S0001434624110385}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85218179565}
Linking options:
  • https://www.mathnet.ru/eng/mzm14499
  • https://doi.org/10.4213/mzm14499
  • https://www.mathnet.ru/eng/mzm/v116/i6/p941
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025