Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1998, Volume 64, Issue 5, Pages 763–768
DOI: https://doi.org/10.4213/mzm1452
(Mi mzm1452)
 

Analytic properties of conditional curvatures of convex hypersurfaces and the Dirichlet problem for the Monge–Ampére equation

A. Taskaraev

V. I. Lenin Tashkent State University
References:
Abstract: The existence and uniqueness of a surface with given geometric characteristics is one of the important topical problems of global differential geometry. By stating this problem in terms of analysis, we arrive at second-order elliptic and parabolic partial differential equations. In the present paper we consider generalized solutions of the Monge–Ampére equation $\|z_{ij}\|=\varphi(x,z,p)$ in $\Lambda^n$, where $z=z(x_1,\dots,x_n)$ is a convex function, $p=(p_1,\dots,p_n)= (\partial z/\partial x_1,\dots,\partial z/\partial x_n)$, $z_{ij}=\partial^2z/\partial x_i\partial x_j$. We consider the Cayley–Klein model of the space $\Lambda^n$ and use a method based on fixed point principle for Banach spaces.
Received: 15.09.1996
English version:
Mathematical Notes, 1998, Volume 64, Issue 5, Pages 658–662
DOI: https://doi.org/10.1007/BF02316291
Bibliographic databases:
UDC: 517
Language: Russian
Citation: A. Taskaraev, “Analytic properties of conditional curvatures of convex hypersurfaces and the Dirichlet problem for the Monge–Ampére equation”, Mat. Zametki, 64:5 (1998), 763–768; Math. Notes, 64:5 (1998), 658–662
Citation in format AMSBIB
\Bibitem{Tas98}
\by A.~Taskaraev
\paper Analytic properties of conditional curvatures of convex hypersurfaces and the Dirichlet problem for the Monge--Amp\'ere equation
\jour Mat. Zametki
\yr 1998
\vol 64
\issue 5
\pages 763--768
\mathnet{http://mi.mathnet.ru/mzm1452}
\crossref{https://doi.org/10.4213/mzm1452}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1691218}
\zmath{https://zbmath.org/?q=an:0935.53029}
\transl
\jour Math. Notes
\yr 1998
\vol 64
\issue 5
\pages 658--662
\crossref{https://doi.org/10.1007/BF02316291}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000080436700013}
Linking options:
  • https://www.mathnet.ru/eng/mzm1452
  • https://doi.org/10.4213/mzm1452
  • https://www.mathnet.ru/eng/mzm/v64/i5/p763
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025