Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 116, Issue 4, paper published in the English version journal (Mi mzm14523)  

Papers published in the English version of the journal

The uniform inversion of double Fourier integral of bounded variation functions that may not be Lebesgue integrable

E. Torres-Teutle, F. J. Mendoza-Torres, M. G. Morales-Macias

Facultad de Ciencias Fisico Matemáticas, Benemérita Universidad Autónoma de Puebla, Mexico
Abstract: In this work we prove the locally uniform convergence of the truncated Fourier double integral (also called Dirichlet integral) of bounded variation functions that are not necessarily Lebesgue integrable.
Keywords: double Fourier integral, Fourier transform, Kurzweil–Henstock integral, bounded Hardy variation.
Funding agency Grant number
CONACYT - Consejo Nacional de Ciencia y Tecnología
This research was supported partially by CONAHCyT-SNI, Mexico.
Received: 15.08.2024
Revised: 15.08.2024
Published: 11.10.2024
English version:
Mathematical Notes, 2024, Volume 116, Issue 4, Pages 793–803
DOI: https://doi.org/10.1134/S0001434624090359
Bibliographic databases:
Document Type: Article
Language: English
Citation: E. Torres-Teutle, F. J. Mendoza-Torres, M. G. Morales-Macias, “The uniform inversion of double Fourier integral of bounded variation functions that may not be Lebesgue integrable”, Math. Notes, 116:4 (2024), 793–803
Citation in format AMSBIB
\Bibitem{TorMenMor24}
\by E.~Torres-Teutle, F.~J.~Mendoza-Torres, M.~G.~Morales-Macias
\paper The uniform inversion of double Fourier integral of bounded variation functions that may not be Lebesgue integrable
\jour Math. Notes
\yr 2024
\vol 116
\issue 4
\pages 793--803
\mathnet{http://mi.mathnet.ru/mzm14523}
\crossref{https://doi.org/10.1134/S0001434624090359}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85213431673}
Linking options:
  • https://www.mathnet.ru/eng/mzm14523
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025