Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2025, Volume 117, Issue 3, Pages 333–343
DOI: https://doi.org/10.4213/mzm14548
(Mi mzm14548)
 

This article is cited in 1 scientific paper (total in 1 paper)

Uniform stability of the Hochstadt–Lieberman problem

N. P. Bondarenkoabcd

a Saratov State University
b Samara National Research University
c Peoples' Friendship University of Russia named after Patrice Lumumba, Moscow
d Moscow Center for Fundamental and Applied Mathematics
References:
Abstract: The paper proves the uniform stability of the Hochstadt–Lieberman problem which consists in recovering the potential of the Sturm–Liouville operator on half the interval from the spectrum and the known potential on the other half of the interval. The proof method is based on the uniform stability of the direct and inverse Sturm–Liouville problems, of recovering a sine-type function from its zeros, and on the uniform boundedness of Riesz bases of sines and cosines.
Keywords: inverse spectral problem, half-inverse problem, uniform stability.
Funding agency Grant number
Russian Science Foundation 24-71-10003
This work was financially supported by the Russian Science Foundation, project no. 24-71-10003, https://rscf.ru/en/project/24-71-10003/.
Received: 16.10.2024
Published: 04.06.2025
English version:
Mathematical Notes, 2025, Volume 117, Issue 3, Pages 357–365
DOI: https://doi.org/10.1134/S0001434625030022
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: N. P. Bondarenko, “Uniform stability of the Hochstadt–Lieberman problem”, Mat. Zametki, 117:3 (2025), 333–343; Math. Notes, 117:3 (2025), 357–365
Citation in format AMSBIB
\Bibitem{Bon25}
\by N.~P.~Bondarenko
\paper Uniform stability of the Hochstadt--Lieberman problem
\jour Mat. Zametki
\yr 2025
\vol 117
\issue 3
\pages 333--343
\mathnet{http://mi.mathnet.ru/mzm14548}
\crossref{https://doi.org/10.4213/mzm14548}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4920209}
\transl
\jour Math. Notes
\yr 2025
\vol 117
\issue 3
\pages 357--365
\crossref{https://doi.org/10.1134/S0001434625030022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105008236012}
Linking options:
  • https://www.mathnet.ru/eng/mzm14548
  • https://doi.org/10.4213/mzm14548
  • https://www.mathnet.ru/eng/mzm/v117/i3/p333
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025