Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2025, Volume 117, Issue 1, paper published in the English version journal (Mi mzm14731)  

Papers published in the English version of the journal

About the radial solutions of the nonlinear $(p_1,p_2)$-Laplacian problem

B. Khamessiab

a Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunisia
b Faculty of Science, Taibah University, Al-Madinah al-Munawwarah, Saudi Arabia
Abstract: Let $p_1, p_2>1$, we consider the following sum of two different $p$-Laplacians problem
$$\begin{cases}-L_{p_1}u-L_{p_2}u=a(t)u^{\sigma}\quad \text{on}\ \ (0,1), \\ \displaystyle\lim_{t \longrightarrow 0} A(t)\bigl(| u' |^{p_1-2}u' +|u'|^{p_2-2}u'\bigr) (t)=0, \\ u(1)=0, \end{cases}$$
where $0<\sigma<\min(p_1, p_2)-1$ and the operator $L_{p}u$ is defined by
$$ L_{p}u:=\dfrac{1}{A}(A| u' |^{p-2} u')' $$
for $p>1$. We provide sufficient conditions on the functions $A$ and $a$ that yield the existence, and we give the asymptotic behavior of radial positive solutions. An example is given to illustrate the applicability of our main results.
Keywords: potential theory, $(p_1,p_2)$-Laplacian, positive solution, asymptotic behavior.
Received: 05.05.2024
Revised: 29.10.2024
Published: 13.05.2025
English version:
Mathematical Notes, 2025, Volume 117, Issue 1, Pages 85–107
DOI: https://doi.org/10.1134/S0001434624604143
Bibliographic databases:
Document Type: Article
Language: English
Citation: B. Khamessi, “About the radial solutions of the nonlinear $(p_1,p_2)$-Laplacian problem”, Math. Notes, 117:1 (2025), 85–107
Citation in format AMSBIB
\Bibitem{Kha25}
\by B.~Khamessi
\paper About the radial solutions of the nonlinear $(p_1,p_2)$-Laplacian problem
\jour Math. Notes
\yr 2025
\vol 117
\issue 1
\pages 85--107
\mathnet{http://mi.mathnet.ru/mzm14731}
\crossref{https://doi.org/10.1134/S0001434624604143}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=4922012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-105007228474}
Linking options:
  • https://www.mathnet.ru/eng/mzm14731
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025