|
This article is cited in 4 scientific papers (total in 4 papers)
Nil-Manifolds Cannot be Immersed as Hypersurfaces in Euclidean Spaces
L. A. Masal'tsev V. N. Karazin Kharkiv National University
Abstract:
We prove that the $2n+1$-dimensional Heisenberg group $H_n$ and the $4$-manifolds $\operatorname{Nil}^4$ and $\operatorname{Nil}^3\times\mathbb R$ endowed with an arbitrary left-invariant metric admit no $C^3$-regular immersions into Euclidean spaces $\mathbb R^{2n+2}$ and $\mathbb R^5$, respectively.
Received: 25.09.2003 Revised: 30.03.2004
Citation:
L. A. Masal'tsev, “Nil-Manifolds Cannot be Immersed as Hypersurfaces in Euclidean Spaces”, Mat. Zametki, 76:6 (2004), 868–873; Math. Notes, 76:6 (2004), 810–815
Linking options:
https://www.mathnet.ru/eng/mzm158https://doi.org/10.4213/mzm158 https://www.mathnet.ru/eng/mzm/v76/i6/p868
|
|