|
This article is cited in 9 scientific papers (total in 9 papers)
Counterexample to Peano's theorem in infinite-dimensional $F'$-spaces
S. A. Shkarin M. V. Lomonosov Moscow State University
Abstract:
Let $E$ be a nonnormable Fréchet space, and let $E'$ be the space of all continuous linear functionals on $E$ in the strong topology. A continuous mapping $f\colon E'\to E'$ such that for any $t_0\in\mathbb R,x_0\in E'$, the Cauchy problem $\dot x=f(x)$, $x(t_0)=x_0$ has no solutions is constructed.
Received: 25.01.1995 Revised: 01.12.1995
Citation:
S. A. Shkarin, “Counterexample to Peano's theorem in infinite-dimensional $F'$-spaces”, Mat. Zametki, 62:1 (1997), 128–137; Math. Notes, 62:1 (1997), 108–115
Linking options:
https://www.mathnet.ru/eng/mzm1596https://doi.org/10.4213/mzm1596 https://www.mathnet.ru/eng/mzm/v62/i1/p128
|
| Statistics & downloads: |
| Abstract page: | 590 | | Full-text PDF : | 272 | | References: | 78 | | First page: | 1 |
|