Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 62, Issue 6, Pages 898–909
DOI: https://doi.org/10.4213/mzm1679
(Mi mzm1679)
 

This article is cited in 7 scientific papers (total in 7 papers)

Strong-norm error estimates for the projective-difference method for approximately solving abstract parabolic equations

V. V. Smagin

Voronezh State University
References:
Abstract: Solutions continuously differentiable with respect to time of parabolic equations in Hilbert space are obtained by the projective-difference method approximately. The discretization of the problem is carried out in the spatial variables using Galerkin's method, and in the time variable using Euler's implicit method. Strong-norm error estimates for approximate solutions are obtained. These estimates not only allow one to establish the convergence of the approximate solutions to the exact ones but also yield numerical characteristics of the rates of convergence. In particular, order-sharp error estimates for finite element subspaces are obtained.
Received: 15.03.1994
Revised: 16.06.1997
English version:
Mathematical Notes, 1997, Volume 62, Issue 6, Pages 752–761
DOI: https://doi.org/10.1007/BF02355464
Bibliographic databases:
UDC: 517.988.8
Language: Russian
Citation: V. V. Smagin, “Strong-norm error estimates for the projective-difference method for approximately solving abstract parabolic equations”, Mat. Zametki, 62:6 (1997), 898–909; Math. Notes, 62:6 (1997), 752–761
Citation in format AMSBIB
\Bibitem{Sma97}
\by V.~V.~Smagin
\paper Strong-norm error estimates for the projective-difference method for approximately solving abstract parabolic equations
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 6
\pages 898--909
\mathnet{http://mi.mathnet.ru/mzm1679}
\crossref{https://doi.org/10.4213/mzm1679}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1635182}
\zmath{https://zbmath.org/?q=an:0916.65097}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 6
\pages 752--761
\crossref{https://doi.org/10.1007/BF02355464}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075396200030}
Linking options:
  • https://www.mathnet.ru/eng/mzm1679
  • https://doi.org/10.4213/mzm1679
  • https://www.mathnet.ru/eng/mzm/v62/i6/p898
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:532
    Full-text PDF :235
    References:99
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025