|
Boundary value problem for the Burgers system
N. N. Frolov Far Eastern National University
Abstract:
We consider the boundary value problem
$$
\begin{gathered}
\operatorname{div}(\rho V)=0,\qquad\rho|_{\Gamma_1}=\rho_0,
\\ \rho(V,\nabla V)=\nu\Delta V,\qquad V|_\Gamma=V^0
\end{gathered}
$$
for a vector function $V=(V_1,V_2)$ and a scalar function $\rho\ge0$ in a rectangular domain $\Omega\subset\mathbb R^2$ with boundary $\Gamma$. Here
$$
\Gamma_1=\{x\in\Gamma: (V^0,n)<0\},\qquad
V_1^0|_\Gamma>0,\qquad\nu=\operatorname{const}>0.
$$
We prove that this problem is solvable in Hölder classes.
Received: 21.03.1995 Revised: 27.02.1996
Citation:
N. N. Frolov, “Boundary value problem for the Burgers system”, Mat. Zametki, 62:6 (1997), 921–932; Math. Notes, 62:6 (1997), 771–780
Linking options:
https://www.mathnet.ru/eng/mzm1682https://doi.org/10.4213/mzm1682 https://www.mathnet.ru/eng/mzm/v62/i6/p921
|
| Statistics & downloads: |
| Abstract page: | 492 | | Full-text PDF : | 279 | | References: | 105 | | First page: | 2 |
|