Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 1997, Volume 62, Issue 6, Pages 921–932
DOI: https://doi.org/10.4213/mzm1682
(Mi mzm1682)
 

Boundary value problem for the Burgers system

N. N. Frolov

Far Eastern National University
References:
Abstract: We consider the boundary value problem
$$ \begin{gathered} \operatorname{div}(\rho V)=0,\qquad\rho|_{\Gamma_1}=\rho_0, \\ \rho(V,\nabla V)=\nu\Delta V,\qquad V|_\Gamma=V^0 \end{gathered} $$
for a vector function $V=(V_1,V_2)$ and a scalar function $\rho\ge0$ in a rectangular domain $\Omega\subset\mathbb R^2$ with boundary $\Gamma$. Here
$$ \Gamma_1=\{x\in\Gamma: (V^0,n)<0\},\qquad V_1^0|_\Gamma>0,\qquad\nu=\operatorname{const}>0. $$
We prove that this problem is solvable in Hölder classes.
Received: 21.03.1995
Revised: 27.02.1996
English version:
Mathematical Notes, 1997, Volume 62, Issue 6, Pages 771–780
DOI: https://doi.org/10.1007/BF02355467
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: N. N. Frolov, “Boundary value problem for the Burgers system”, Mat. Zametki, 62:6 (1997), 921–932; Math. Notes, 62:6 (1997), 771–780
Citation in format AMSBIB
\Bibitem{Fro97}
\by N.~N.~Frolov
\paper Boundary value problem for the Burgers system
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 6
\pages 921--932
\mathnet{http://mi.mathnet.ru/mzm1682}
\crossref{https://doi.org/10.4213/mzm1682}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1635194}
\zmath{https://zbmath.org/?q=an:0916.35089}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 6
\pages 771--780
\crossref{https://doi.org/10.1007/BF02355467}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075396200033}
Linking options:
  • https://www.mathnet.ru/eng/mzm1682
  • https://doi.org/10.4213/mzm1682
  • https://www.mathnet.ru/eng/mzm/v62/i6/p921
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:492
    Full-text PDF :279
    References:105
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025