|
This article is cited in 7 scientific papers (total in 7 papers)
Optimal error estimates of a locally one-dimensional method for the multidimensional heat equation
S. B. Zaitseva, A. A. Zlotnik Moscow Power Engineering Institute (Technical University)
Abstract:
For the multidimensional heat equation in a parallelepiped, optimal error estimates in $L_2(Q)$ are derived. The error is of the order of $O(\tau+|h|^2)$ for any right-hand side $f\in L_2(Q)$ and any initial function $u_0\in\mathring W_2^1(\Omega)$; for appropriate classes of less regular $f$ and $u_0$, the error is of the order of $O\bigl((\tau+|h|^2)^\gamma\bigr)$, $1/2\le\gamma<1$.
Received: 16.05.1995
Citation:
S. B. Zaitseva, A. A. Zlotnik, “Optimal error estimates of a locally one-dimensional method for the multidimensional heat equation”, Mat. Zametki, 60:2 (1996), 185–197; Math. Notes, 60:2 (1996), 137–146
Linking options:
https://www.mathnet.ru/eng/mzm1818https://doi.org/10.4213/mzm1818 https://www.mathnet.ru/eng/mzm/v60/i2/p185
|
|