Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2003, Volume 73, Issue 5, Pages 704–723
DOI: https://doi.org/10.4213/mzm220
(Mi mzm220)
 

This article is cited in 16 scientific papers (total in 16 papers)

Reconstructing Coefficients of Series from Certain Orthogonal Systems of Functions

V. V. Kostin

M. V. Lomonosov Moscow State University
References:
Abstract: We consider a series with respect to a multiplicative Price system or a generalized Haar system and assume that the martingale subsequence of its partial sums converges almost everywhere. In this paper we prove that, under certain conditions imposed on the majorant of this sequence, the series is a Fourier series in the sense of the $A$-integral (or its generalizations) of the limit function if the series is considered as a series with respect to a system with $\sup p_n<\infty$. In similar terms, we also present sufficient conditions for a series to be a Fourier series in the sense of the usual Lebesgue integral. We give an example showing that the corresponding assertions do not hold if $\sup p_n=\infty$.
Received: 20.06.2001
English version:
Mathematical Notes, 2003, Volume 73, Issue 5, Pages 662–679
DOI: https://doi.org/10.1023/A:1024012705318
Bibliographic databases:
UDC: 517.518.3
Language: Russian
Citation: V. V. Kostin, “Reconstructing Coefficients of Series from Certain Orthogonal Systems of Functions”, Mat. Zametki, 73:5 (2003), 704–723; Math. Notes, 73:5 (2003), 662–679
Citation in format AMSBIB
\Bibitem{Kos03}
\by V.~V.~Kostin
\paper Reconstructing Coefficients of Series from Certain Orthogonal Systems of Functions
\jour Mat. Zametki
\yr 2003
\vol 73
\issue 5
\pages 704--723
\mathnet{http://mi.mathnet.ru/mzm220}
\crossref{https://doi.org/10.4213/mzm220}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1937066}
\zmath{https://zbmath.org/?q=an:1052.42025}
\transl
\jour Math. Notes
\yr 2003
\vol 73
\issue 5
\pages 662--679
\crossref{https://doi.org/10.1023/A:1024012705318}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183962500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0347755236}
Linking options:
  • https://www.mathnet.ru/eng/mzm220
  • https://doi.org/10.4213/mzm220
  • https://www.mathnet.ru/eng/mzm/v73/i5/p704
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025