Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 77, Issue 2, Pages 163–175
DOI: https://doi.org/10.4213/mzm2480
(Mi mzm2480)
 

This article is cited in 2 scientific papers (total in 2 papers)

Justifying the convergence of the rectangular method for complete singular integral equations with continuous coefficients on the circle

M. É. Abramyan

Rostov State University
Full-text PDF (222 kB) Citations (2)
References:
Abstract: For an integral equation on the unit circle $\Gamma$ of the form $(aI+bS+K)f=g$, where $a$ and $b$ are Hölder functions, $S$ is a singular integration operator, and $K$ is an integral operator with Hölder kernel, we consider a method of solution based on the discretization of integral operators using the rectangle rule. This method is justified under the assumption that the equation is solvable in $L_2(\Gamma)$ and the coefficients $a$ and $b$ satisfy the strong ellipticity condition.
Received: 18.07.2002
English version:
Mathematical Notes, 2005, Volume 77, Issue 2, Pages 149–160
DOI: https://doi.org/10.1007/s11006-005-0016-0
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: M. É. Abramyan, “Justifying the convergence of the rectangular method for complete singular integral equations with continuous coefficients on the circle”, Mat. Zametki, 77:2 (2005), 163–175; Math. Notes, 77:2 (2005), 149–160
Citation in format AMSBIB
\Bibitem{Abr05}
\by M.~\'E.~Abramyan
\paper Justifying the convergence of the rectangular method for complete singular integral equations with continuous coefficients on the circle
\jour Mat. Zametki
\yr 2005
\vol 77
\issue 2
\pages 163--175
\mathnet{http://mi.mathnet.ru/mzm2480}
\crossref{https://doi.org/10.4213/mzm2480}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2157087}
\zmath{https://zbmath.org/?q=an:1083.65121}
\elib{https://elibrary.ru/item.asp?id=9150066}
\transl
\jour Math. Notes
\yr 2005
\vol 77
\issue 2
\pages 149--160
\crossref{https://doi.org/10.1007/s11006-005-0016-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000227418800016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-20144379766}
Linking options:
  • https://www.mathnet.ru/eng/mzm2480
  • https://doi.org/10.4213/mzm2480
  • https://www.mathnet.ru/eng/mzm/v77/i2/p163
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025