|
This article is cited in 10 scientific papers (total in 10 papers)
Asymptotics of the eigenvalues and the formula for the trace of perturbations of the Laplace operator on the sphere $\mathbb S^2$
V. A. Sadovnichiia, Z. Yu. Fazullinb a M. V. Lomonosov Moscow State University
b Bashkir State University
Abstract:
In this paper, we study the asymptotics of the eigenvalues of the Laplace operator perturbed by an arbitrary bounded operator on the sphere $\mathbb S^2$. For the first time, for the partial differential operator of second order, the leading term of the second correction of perturbation theory is obtained. A connection between the coefficient of the second term of the asymptotics of the eigenvalues and the formula for the traces of the operator under consideration is established.
Received: 18.11.2003 Revised: 08.07.2004
Citation:
V. A. Sadovnichii, Z. Yu. Fazullin, “Asymptotics of the eigenvalues and the formula for the trace of perturbations of the Laplace operator on the sphere $\mathbb S^2$”, Mat. Zametki, 77:3 (2005), 434–448; Math. Notes, 77:3 (2005), 400–413
Linking options:
https://www.mathnet.ru/eng/mzm2504https://doi.org/10.4213/mzm2504 https://www.mathnet.ru/eng/mzm/v77/i3/p434
|
|