Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2005, Volume 77, Issue 5, Pages 788–796
DOI: https://doi.org/10.4213/mzm2533
(Mi mzm2533)
 

This article is cited in 1 scientific paper (total in 1 paper)

Equivalence of the $C^*$-Algebras $q\mathbb C$ and $C_0(\mathbb R^2)$ in the Asymptotic Category

T. V. Shulman

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (219 kB) Citations (1)
References:
Abstract: The results of Kasparov, Connes, Higson, and Loring imply the coincidence of the functors $[[q\mathbb C\otimes K,B\otimes K]]=[[C_0(\mathbb R^2)\otimes K,B\otimes K]]$ for any $C^*$-algebra $B$; here $[[A,B]]$ denotes the set of homotopy classes of asymptotic homomorphisms from $A$ to $B$. Inthe paper, this assertion is strengthened; namely, it is shown that the algebras $q\mathbb C\otimes K$ and $C_0(\mathbb R^2)\otimes K$ are equivalent in the category whose objects are $C^*$-algebras and morphisms are classes of homotopic asymptotic homomorphisms. Some geometric properties of the obtained equivalence are studied. Namely, the algebras $q\mathbb C\otimes K$ and $C_0(\mathbb R^2)\otimes K$ are represented as fields of $C^*$-algebras; it is proved that the equivalence is not fiber-preserving, i.e., is does not take fibers to fibers. It is also proved that the algebras under consideration are not homotopy equivalent.
Received: 27.02.2003
Revised: 29.04.2004
English version:
Mathematical Notes, 2005, Volume 77, Issue 5, Pages 726–734
DOI: https://doi.org/10.1007/s11006-005-0073-4
Bibliographic databases:
UDC: 517.98
Language: Russian
Citation: T. V. Shulman, “Equivalence of the $C^*$-Algebras $q\mathbb C$ and $C_0(\mathbb R^2)$ in the Asymptotic Category”, Mat. Zametki, 77:5 (2005), 788–796; Math. Notes, 77:5 (2005), 726–734
Citation in format AMSBIB
\Bibitem{Shu05}
\by T.~V.~Shulman
\paper Equivalence of the $C^*$-Algebras $q\mathbb C$ and $C_0(\mathbb R^2)$ in the Asymptotic Category
\jour Mat. Zametki
\yr 2005
\vol 77
\issue 5
\pages 788--796
\mathnet{http://mi.mathnet.ru/mzm2533}
\crossref{https://doi.org/10.4213/mzm2533}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2178848}
\zmath{https://zbmath.org/?q=an:1092.46051}
\elib{https://elibrary.ru/item.asp?id=9155828}
\transl
\jour Math. Notes
\yr 2005
\vol 77
\issue 5
\pages 726--734
\crossref{https://doi.org/10.1007/s11006-005-0073-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000230336000013}
\elib{https://elibrary.ru/item.asp?id=13473867}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-21644449173}
Linking options:
  • https://www.mathnet.ru/eng/mzm2533
  • https://doi.org/10.4213/mzm2533
  • https://www.mathnet.ru/eng/mzm/v77/i5/p788
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025