Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 79, Issue 3, Pages 369–383
DOI: https://doi.org/10.4213/mzm2707
(Mi mzm2707)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the accumulation of eigenvalues of operator pencils connected with the problem of vibrations in a viscoelastic rod

A. A. Vladimirov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (269 kB) Citations (2)
References:
Abstract: In this paper, we study the problem of the boundary accumulation of a discrete spectrum, which is essential for a boundary-value problem of fourth order arising in the theory of small transverse vibrations in an inhomogeneous viscoelastic rod (a Kelvin–Voigt body). We establish conditions for such an accumulation and its asymptotics, which are expressed in terms of the coefficients defining the problem posed by the differential expression. The results obtained are illustrated by numerical computation data.
Received: 27.10.2004
English version:
Mathematical Notes, 2006, Volume 79, Issue 3, Pages 342–355
DOI: https://doi.org/10.1007/s11006-006-0039-1
Bibliographic databases:
UDC: 517.984
Language: Russian
Citation: A. A. Vladimirov, “On the accumulation of eigenvalues of operator pencils connected with the problem of vibrations in a viscoelastic rod”, Mat. Zametki, 79:3 (2006), 369–383; Math. Notes, 79:3 (2006), 342–355
Citation in format AMSBIB
\Bibitem{Vla06}
\by A.~A.~Vladimirov
\paper On the accumulation of eigenvalues of operator pencils connected with the problem of vibrations in a~viscoelastic rod
\jour Mat. Zametki
\yr 2006
\vol 79
\issue 3
\pages 369--383
\mathnet{http://mi.mathnet.ru/mzm2707}
\crossref{https://doi.org/10.4213/mzm2707}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2251361}
\zmath{https://zbmath.org/?q=an:1115.47013}
\elib{https://elibrary.ru/item.asp?id=9192926}
\transl
\jour Math. Notes
\yr 2006
\vol 79
\issue 3
\pages 342--355
\crossref{https://doi.org/10.1007/s11006-006-0039-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000237374700005}
\elib{https://elibrary.ru/item.asp?id=14008507}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33646006716}
Linking options:
  • https://www.mathnet.ru/eng/mzm2707
  • https://doi.org/10.4213/mzm2707
  • https://www.mathnet.ru/eng/mzm/v79/i3/p369
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025