Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 79, Issue 3, Pages 384–395
DOI: https://doi.org/10.4213/mzm2708
(Mi mzm2708)
 

This article is cited in 36 scientific papers (total in 37 papers)

Combinational properties of sets of residues modulo a prime and the Erdős–Graham problem

A. A. Glibichuk

M. V. Lomonosov Moscow State University
References:
Abstract: Consider an arbitrary $\varepsilon>0$ and a sufficiently large prime $p>2$. It is proved that, for any integer $a$, there exist pairwise distinct integers $x_1,x_2,\dots,x_N$, where $N=8([1/\varepsilon+1/2]+1)^2$ such that $1\le x_i\le p^\varepsilon$, $i=1,\dots,N$, and
$$ a\equiv x_1^{-1}+\dotsb+x_N^{-1}\pmod p, $$
where $x_i^{-1}$ is the least positive integer satisfying $x_i^{-1}x_i\equiv1\pmod p$. This improves a result of Sparlinski.
Received: 03.05.2005
Revised: 26.09.2005
English version:
Mathematical Notes, 2006, Volume 79, Issue 3, Pages 356–365
DOI: https://doi.org/10.1007/s11006-006-0040-8
Bibliographic databases:
UDC: 511.3
Language: Russian
Citation: A. A. Glibichuk, “Combinational properties of sets of residues modulo a prime and the Erdős–Graham problem”, Mat. Zametki, 79:3 (2006), 384–395; Math. Notes, 79:3 (2006), 356–365
Citation in format AMSBIB
\Bibitem{Gli06}
\by A.~A.~Glibichuk
\paper Combinational properties of sets of residues modulo a prime and the Erd\H os--Graham problem
\jour Mat. Zametki
\yr 2006
\vol 79
\issue 3
\pages 384--395
\mathnet{http://mi.mathnet.ru/mzm2708}
\crossref{https://doi.org/10.4213/mzm2708}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2251362}
\zmath{https://zbmath.org/?q=an:1129.11004}
\elib{https://elibrary.ru/item.asp?id=9192927}
\transl
\jour Math. Notes
\yr 2006
\vol 79
\issue 3
\pages 356--365
\crossref{https://doi.org/10.1007/s11006-006-0040-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000237374700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33646013292}
Linking options:
  • https://www.mathnet.ru/eng/mzm2708
  • https://doi.org/10.4213/mzm2708
  • https://www.mathnet.ru/eng/mzm/v79/i3/p384
  • This publication is cited in the following 37 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025