|
This article is cited in 36 scientific papers (total in 37 papers)
Combinational properties of sets of residues modulo a prime and the Erdős–Graham problem
A. A. Glibichuk M. V. Lomonosov Moscow State University
Abstract:
Consider an arbitrary $\varepsilon>0$ and a sufficiently large prime $p>2$. It is proved that, for any integer $a$, there exist pairwise distinct integers $x_1,x_2,\dots,x_N$, where $N=8([1/\varepsilon+1/2]+1)^2$ such that $1\le x_i\le p^\varepsilon$, $i=1,\dots,N$, and
$$
a\equiv x_1^{-1}+\dotsb+x_N^{-1}\pmod p,
$$
where $x_i^{-1}$ is the least positive integer satisfying $x_i^{-1}x_i\equiv1\pmod p$. This improves a result of Sparlinski.
Received: 03.05.2005 Revised: 26.09.2005
Citation:
A. A. Glibichuk, “Combinational properties of sets of residues modulo a prime and the Erdős–Graham problem”, Mat. Zametki, 79:3 (2006), 384–395; Math. Notes, 79:3 (2006), 356–365
Linking options:
https://www.mathnet.ru/eng/mzm2708https://doi.org/10.4213/mzm2708 https://www.mathnet.ru/eng/mzm/v79/i3/p384
|
|