|
This article is cited in 4 scientific papers (total in 4 papers)
The Lappo–Danilevskii method and trivial intersections of radicals in lower central series terms for certain fundamental groups
V. P. Leksin Kolomna State Pedagogical Institute
Abstract:
In this paper, it is proved that the intersection of the radicals of nilpotent residues for the generalized pure braid group corresponding to an irreducible finite Coxeter group or an irreducible imprimitive finite complex reflection group is always trivial. The proof uses the solvability of the Riemann–Hilbert problem for analytic families of faithful linear representations by the Lappo–Danilevskii method. Generalized Burau representations are defined for the generalized braid groups corresponding to finite complex reflection groups whose Dynkin–Cohen graphs are trees. The Fuchsian connections for which the monodromy representations are equivalent to the restrictions of generalized Burau representations to pure braid groups are described. The question about the faithfulness of generalized Burau representations and their restrictions to pure braid groups is posed.
Received: 15.06.2005
Citation:
V. P. Leksin, “The Lappo–Danilevskii method and trivial intersections of radicals in lower central series terms for certain fundamental groups”, Mat. Zametki, 79:4 (2006), 577–580; Math. Notes, 79:4 (2006), 533–536
Linking options:
https://www.mathnet.ru/eng/mzm2727https://doi.org/10.4213/mzm2727 https://www.mathnet.ru/eng/mzm/v79/i4/p577
|
|