Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Subscription
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 80, Issue 1, Pages 11–19
DOI: https://doi.org/10.4213/mzm2774
(Mi mzm2774)
 

This article is cited in 29 scientific papers (total in 29 papers)

Jackson-Type Inequalities and Widths of Function Classes in $L_2$

S. B. Vakarchuk

Ukrainian Academy of Customs
References:
Abstract: The sharp Jackson-type inequalities obtained by Taikov in the space $L_2$ and containing the best approximation and the modulus of continuity of first order are generalized to moduli of continuity of $k$th order $(k=2,3,\dots)$. We also obtain exact values of the $n$-widths of the function classes $F(k,r,\Phi)$ and $\mathcal{F}_k^r (h)$, which are a generalization of the classes $F(1,r,\Phi)$ and $\mathcal{F}^r_1(h)$ studied by Taikov.
Keywords: Jackson-type inequalities, width of function classes, modulus of continuity of $k$th order, periodic function, Bernstein, Kolmogorov, Gelfand $n$-widths.
Received: 09.03.2005
Revised: 25.12.2005
English version:
Mathematical Notes, 2006, Volume 80, Issue 1, Pages 11–18
DOI: https://doi.org/10.1007/s11006-006-0102-y
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: S. B. Vakarchuk, “Jackson-Type Inequalities and Widths of Function Classes in $L_2$”, Mat. Zametki, 80:1 (2006), 11–19; Math. Notes, 80:1 (2006), 11–18
Citation in format AMSBIB
\Bibitem{Vak06}
\by S.~B.~Vakarchuk
\paper Jackson-Type Inequalities and Widths of Function Classes in~$L_2$
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 1
\pages 11--19
\mathnet{http://mi.mathnet.ru/mzm2774}
\crossref{https://doi.org/10.4213/mzm2774}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2280732}
\zmath{https://zbmath.org/?q=an:1114.41007}
\elib{https://elibrary.ru/item.asp?id=9281586}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 1
\pages 11--18
\crossref{https://doi.org/10.1007/s11006-006-0102-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240278000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747501825}
Linking options:
  • https://www.mathnet.ru/eng/mzm2774
  • https://doi.org/10.4213/mzm2774
  • https://www.mathnet.ru/eng/mzm/v80/i1/p11
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:631
    Full-text PDF :349
    References:91
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025