Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2006, Volume 80, Issue 1, Pages 87–94
DOI: https://doi.org/10.4213/mzm2783
(Mi mzm2783)
 

This article is cited in 9 scientific papers (total in 9 papers)

On the Existence of a Variational Principle for an Operator Equation with Second Derivative with Respect to “Time”

V. M. Savchin, S. A. Budochkina

Peoples Friendship University of Russia
Full-text PDF (405 kB) Citations (9)
References:
Abstract: Using methods of nonlinear functional analysis, we define the structure of an evolution operator equation of second order that can be formulated in direct variational terms.
Keywords: operator equation with time second derivative, variational principle, Gâteaux derivative, operator potential, Volterra equation.
Received: 30.04.2003
Revised: 15.07.2005
English version:
Mathematical Notes, 2006, Volume 80, Issue 1, Pages 83–90
DOI: https://doi.org/10.1007/s11006-006-0111-x
Bibliographic databases:
UDC: 517.93, 517.972.5
Language: Russian
Citation: V. M. Savchin, S. A. Budochkina, “On the Existence of a Variational Principle for an Operator Equation with Second Derivative with Respect to “Time””, Mat. Zametki, 80:1 (2006), 87–94; Math. Notes, 80:1 (2006), 83–90
Citation in format AMSBIB
\Bibitem{SavBud06}
\by V.~M.~Savchin, S.~A.~Budochkina
\paper On the Existence of a Variational Principle
for an Operator Equation with Second Derivative
with Respect to ``Time''
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 1
\pages 87--94
\mathnet{http://mi.mathnet.ru/mzm2783}
\crossref{https://doi.org/10.4213/mzm2783}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2280741}
\zmath{https://zbmath.org/?q=an:1123.47050}
\elib{https://elibrary.ru/item.asp?id=9281626}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 1
\pages 83--90
\crossref{https://doi.org/10.1007/s11006-006-0111-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240278000011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747495635}
Linking options:
  • https://www.mathnet.ru/eng/mzm2783
  • https://doi.org/10.4213/mzm2783
  • https://www.mathnet.ru/eng/mzm/v80/i1/p87
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025