Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2003, Volume 74, Issue 4, Pages 529–537
DOI: https://doi.org/10.4213/mzm287
(Mi mzm287)
 

Radical Semigroup Rings and the Thue–Morse Semigroup

I. B. Kozhukhov

Moscow State Institute of Electronic Technology (Technical University)
References:
Abstract: Let $R$ be an associative ring with unit, let $S$ be a semigroup with zero, and let $RS$ be a contracted semigroup ring. It is proved that if $RS$ is radical in the sense of Jacobson and if the element 1 has infinite additive order, then $S$ is a locally finite nilsemigroup. Further, for any semigroup $S$, there is a semigroup $T\supset S$ such that the ring $RT$ is radical in the Brown–McCoy sense. Let $S$ be the semigroup of subwords of the sequence $abbabaabbaababbab...$, and let $F$ be the two-element field. Then the ring $FS$ is radical in the Brown–McCoy sense and semisimple in the Jacobson sense.
Received: 18.12.2001
Revised: 04.11.2002
English version:
Mathematical Notes, 2003, Volume 74, Issue 4, Pages 502–509
DOI: https://doi.org/10.1023/A:1026191726647
Bibliographic databases:
UDC: 512.552.7
Language: Russian
Citation: I. B. Kozhukhov, “Radical Semigroup Rings and the Thue–Morse Semigroup”, Mat. Zametki, 74:4 (2003), 529–537; Math. Notes, 74:4 (2003), 502–509
Citation in format AMSBIB
\Bibitem{Koz03}
\by I.~B.~Kozhukhov
\paper Radical Semigroup Rings and the Thue--Morse Semigroup
\jour Mat. Zametki
\yr 2003
\vol 74
\issue 4
\pages 529--537
\mathnet{http://mi.mathnet.ru/mzm287}
\crossref{https://doi.org/10.4213/mzm287}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2042966}
\zmath{https://zbmath.org/?q=an:1065.20077}
\transl
\jour Math. Notes
\yr 2003
\vol 74
\issue 4
\pages 502--509
\crossref{https://doi.org/10.1023/A:1026191726647}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000186455400024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0347125010}
Linking options:
  • https://www.mathnet.ru/eng/mzm287
  • https://doi.org/10.4213/mzm287
  • https://www.mathnet.ru/eng/mzm/v74/i4/p529
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:533
    Full-text PDF :150
    References:96
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025