Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2010, Volume 88, Issue 5, Pages 778–791
DOI: https://doi.org/10.4213/mzm5073
(Mi mzm5073)
 

This article is cited in 11 scientific papers (total in 11 papers)

Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings

V. De Filippis, F. Rania

University of Messina, Italy
References:
Abstract: Let $R$ be a noncommutative prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C$ the extended centroid of $R$, and $L$ a noncentral Lie ideal of $R$. If $F$ and $G$ are generalized derivations of $R$ and $k\ge1$ a fixed integer such that $[F(x),x]_kx-x[G(x),x]_k=0$ for any $x\in L$, then one of the following holds:
  • 1) either there exists an $a\in U$ and an $\alpha\in C$ such that $F(x)=xa$ and $G(x)=(a+\alpha)x$ for all $x\in R$;
  • 2) or $R$ satisfies the standard identity $s_4(x_1,\dots,x_4)$ and one of the following conclusions occurs: \begin{itemize}
  • (a) there exist $a,b,c,q\in U$, such that $a-b+c-q\in C$ and $F(x)=ax+xb$, $G(x)=cx+xq$ for all $x\in R$;
  • (b) there exist $a,b,c\in U$ and a derivation $d$ of $U$ such that $F(x)=ax+d(x)$ and $G(x)=bx+xc-d(x)$ for all $x\in R$, with $a+b-c\in C$.
\end{itemize}
Keywords: prime ring, derivation, generalized derivation, utumi quotient ring, differential identity, (hyper-)centralizing map, generalized polynomial identity.
Received: 11.05.2010
English version:
Mathematical Notes, 2010, Volume 88, Issue 5, Pages 748–758
DOI: https://doi.org/10.1134/S0001434610110143
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: V. De Filippis, F. Rania, “Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings”, Mat. Zametki, 88:5 (2010), 778–791; Math. Notes, 88:5 (2010), 748–758
Citation in format AMSBIB
\Bibitem{De Ran10}
\by V.~De Filippis, F.~Rania
\paper Commuting and Centralizing Generalized Derivations on Lie Ideals in Prime Rings
\jour Mat. Zametki
\yr 2010
\vol 88
\issue 5
\pages 778--791
\mathnet{http://mi.mathnet.ru/mzm5073}
\crossref{https://doi.org/10.4213/mzm5073}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2868400}
\transl
\jour Math. Notes
\yr 2010
\vol 88
\issue 5
\pages 748--758
\crossref{https://doi.org/10.1134/S0001434610110143}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000288489700014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78651228440}
Linking options:
  • https://www.mathnet.ru/eng/mzm5073
  • https://doi.org/10.4213/mzm5073
  • https://www.mathnet.ru/eng/mzm/v88/i5/p778
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025