Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 85, Issue 4, Pages 616–621
DOI: https://doi.org/10.4213/mzm6642
(Mi mzm6642)
 

This article is cited in 10 scientific papers (total in 10 papers)

Hausdorff Measures and Lebesgue Points for the Sobolev Classes $W^p_\alpha$, $\alpha>0$, on Spaces of Homogeneous Type

M. A. Prokhorovich

Belarusian State University
References:
Abstract: Suppose that $(X,\mu,d)$ is a space of homogeneous type, where $d$ is the metric and $\mu$ is the measure related by the doubling condition with exponent $\gamma>0$, $W^p_\alpha(X)$, $p>1$, are the generalized Sobolev classes, $\alpha>0$, and $\operatorname{dim_H}$ is the Hausdorff dimension. We prove that, for any function $u\in W^p_\alpha(X)$, $p>1$, $0<\alpha<\gamma/p$, there exists a set $E\subset X$ such that $\operatorname{dim_H}(E)\le\gamma-\alpha p$ and, for any $x\in X\setminus E$, the limit
$$ \lim_{r\to+0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}u\,d\mu=u^{*}(x) $$
exists; moreover,
$$ \lim_{r\to+0}\frac{1}{\mu(B(x,r))}\int_{B(x,r)}|u-u^{*}(x)|^{q}\,d\mu=0,\qquad \frac{1}{q}=\frac{1}{p}-\frac{\alpha}{\gamma}. $$
For $\alpha=1$, a similar result was obtained earlier by Hajłasz and Kinnunen in 1998. The case $0<\alpha\le1$ was studied by the author in 2007; in the proof, the structures of the corresponding capacities were significantly used.
Keywords: Hausdorff measure, Lebesgue point, Sobolev classes $W^p_\alpha$, $\alpha>0$, Hölder classes $H^\alpha(X)$, Borel measure, Hausdorff capacity, Hausdorff dimension.
Received: 25.03.2008
English version:
Mathematical Notes, 2009, Volume 85, Issue 4, Pages 584–589
DOI: https://doi.org/10.1134/S0001434609030298
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: M. A. Prokhorovich, “Hausdorff Measures and Lebesgue Points for the Sobolev Classes $W^p_\alpha$, $\alpha>0$, on Spaces of Homogeneous Type”, Mat. Zametki, 85:4 (2009), 616–621; Math. Notes, 85:4 (2009), 584–589
Citation in format AMSBIB
\Bibitem{Pro09}
\by M.~A.~Prokhorovich
\paper Hausdorff Measures and Lebesgue Points for the Sobolev Classes~$W^p_\alpha$, $\alpha>0$, on Spaces of Homogeneous Type
\jour Mat. Zametki
\yr 2009
\vol 85
\issue 4
\pages 616--621
\mathnet{http://mi.mathnet.ru/mzm6642}
\crossref{https://doi.org/10.4213/mzm6642}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2549422}
\zmath{https://zbmath.org/?q=an:1182.46023}
\transl
\jour Math. Notes
\yr 2009
\vol 85
\issue 4
\pages 584--589
\crossref{https://doi.org/10.1134/S0001434609030298}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000266561100029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69949180347}
Linking options:
  • https://www.mathnet.ru/eng/mzm6642
  • https://doi.org/10.4213/mzm6642
  • https://www.mathnet.ru/eng/mzm/v85/i4/p616
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025